Prototyp ekstremalnie modularnego hiperredundantnego manipulatora Arm-Z

pol Artykuł w języku polskim DOI: 10.14313/PAR_247/39

Ela Zawidzka *, wyślij Machi Zawidzki *, Wojciech Kiński ** * Instytut Podstawowych Problemów Techniki PAN, ul. Adolfa Pawińskiego 5B, 02-106 Warszawa ** Sieć Badawcza Łukasiewicz – Przemysłowy Instytut Automatyki i Pomiarów PIAP, Al. Jerozolimskie 202, 02-486 Warszawa

Pobierz Artykuł

Streszczenie

Arm-Z to koncepcja hiperredundantnego manipulatora robotycznego składającego się z przystających modułów o jednym stopniu swobody (1-DOF) i realizującego (prawie) dowolne ruchy w przestrzeni. Zasadnicze zalety Arm-Z to: ekonomizacja (dzięki masowej produkcji identycznych elementów) oraz odporność na awarie (po pierwsze – zepsute moduły mogą być łatwo zastąpione, po drugie – nawet gdy jeden lub więcej modułów ulegnie awarii – manipulator taki może ciągle wykonywać, prawdopodobnie w stopniu ograniczonym, zakładane zadania). Podstawową wadą systemu Arm-Z jest jego nieintuicyjne, bardzo trudne sterowanie. Innymi słowy, połączenie koncepcji nietrywialnego modułu z formowaniem praktycznych konstrukcji oraz sterowanie ich rekonfiguracją (transformacją ze stanu A do B) są bardzo złożone obliczeniowo. Mimo to prezentowane podejście jest racjonalne, zważywszy powszechną dostępność wielkich mocy obliczeniowych w kontraście z wysokimi kosztami i „delikatnością” niestandardowych rozwiązań i urządzeń. W artykule nakreślono ogólną koncepcję manipulatora Arm-Z i zaprezentowano wstępne prace zmierzające do wykonania prototypu.

Słowa kluczowe

Arm-Z, odporność na awarie, sterowanie kształtem ogólnym, systemy modularne

Prototype of the Arm-Z Modular Hyper-Redundant Manipulator

Abstract

Arm-Z is a concept of a robotic manipulator comprised of linearly joined congruent modules with possibility of relative twist (1 DOF). The advantages of Arm-Z are: economization (mass-production) and robustness (modules which failed can be replaced, also if some fail the system can perform certain tasks). Non-intuitive and difficult control are the disadvantages of Arm-Z. In other words, the combination of non-trivial module shape with forming of practical modular structures and their control (from state A to B) is computationally expensive. However, due to availability of modern computational power, proposed here approach is rational and competitive, especially considering the high cost and sensitivity of non-standard solutions. This paper outlines the general concept of Arm-Z manipulator and presents preliminary work towards making a proof-of-the-concept prototype.

Keywords

Arm-Z, modular system, overall shape control, robustness

Bibliografia

  1. Zawidzki M., Nagakura T., Arm-Z: a modular virtual manipulative. [In:] H-P. Schröcker, editor, 16th International Conference on Geometry and Graphics, 2014, 75–80.
  2. Gray J., The mechanism of locomotion in snakes. „Journal of Experimental Biology”, Vol. 23, No. 2, 1946, 101–120, DOI: 10.1242/jeb.23.2.101.
  3. Hirose S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, 1993.
  4. Ijspeert A.J., Crespi A., Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007), 262–268, DOI: 10.1109/ROBOT.2007.363797.
  5. Chirikjian G.S., Burdick J.W., Design and Experiments with a 30 DOF Robot. [In:] Proceedings IEEE International Conference on Robotics and Automation, 1993, 113–119, DOI: 10.1109/ROBOT.1993.291862.
  6. Klaassen B., Paap K.L., GMD-SNAKE2: a snake-like robot driven by wheels and a method for motion control. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Vol. 4, 1999, 3014– 3019, DOI: 10.1109/ROBOT.1999.774055.
  7. Miller G., Snake robots for search and rescue, [In:] Neurotechnology for Biomimetic Robots, 2002, DOI: 10.7551/mitpress/4962.003.0023.
  8. Choi H.R., Ryew S.M., Robotic system with active steering capability for internal inspection of urban gas pipelines. „Mechatronics”, Vol. 12, No. 5, 2002, 713–736, DOI: 10.1016/S0957-4158(01)00022-8.
  9. Tsakiris D.P., Sfakiotakis M., Menciassi A., La Spina G., Dario P., Polychaete-like undulatory robotic locomotion. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 3018–3023. IEEE, DOI: 10.1109/ROBOT.2005.1570573.
  10. Melsaac K.A., Ostrowski J.P., A geometric approach to anguilliform locomotion: modelling of an underwater eel robot. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Vol. 4, 1999, 2843–2848, DOI: 10.1109/ROBOT.1999.774028.
  11. Wilbur C., Vorus W., Cao Y., A Lamprey-Based Undulatory Vehicle. [In:] Neurotechnology for Biomimetic Robots, 2002, DOI: 10.7551/mitpress/4962.003.0024.
  12. Yamada H., Development of amphibious snake-like robot ACM-R5. Proceedings of the 36th International Symposium on Robotics (ISR 2005), Tokyo, 2005, 433–440.
  13. Crespi A., Badertscher A., Guignard A., Ijspeert A.J., AmphiBot I: an amphibious snake-like robot. „Robotics and Autonomous Systems”, Vol. 50, No. 4, 2005, 163–175, DOI: 10.1016/j.robot.2004.09.015.
  14. Chirikjian G.S., Burdick J.W., An obstacle avoidance algorithm for hyper-redundant manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 1990, 625–631, DOI: 10.1109/ROBOT.1990.126052.
  15. Ning K., Wörgötter F., A novel concept for building a hyper- -redundant chain robot. „IEEE Transactions on Robotics”, Vol. 25, No. 6, 2009, 1237–1248, DOI: 10.1109/TRO.2009.2032968.
  16. Fahimi F., Ashrafiuon H., Nataraj C., An improved inverse kinematic and velocity solution for spatial hyper-redundant robots. „IEEE Transactions on Robotics and Automation”, Vol. 18, No. 1, 2002, 103–107, DOI: 10.1109/70.988980.
  17. Lafmejani A.S., Doroudchi A., Farivarnejad H., He X., Aukes D., Peet M.M., Marvi H., Fisher R.E., Berman S., Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot. „IEEE Robotics and Automation Letters”, Vol. 5, No. 2, 2020, 3460–3467, DOI: 10.1109/LRA.2020.2976328.
  18. Siciliano B., Khatib O., Kröger T., Springer handbook of robotics, Vol. 200, Springer, 2008.
  19. Murray R.M., Li Z., Sastry S.S., A mathematical introduction to robotic manipulation. CRC press, 1994.
  20. Rolf M., Steil J.J., Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. „IEEE Transactions on Neural Networks and Learning Systems”, Vol. 25, No. 6, 2014, 1147–1160, DOI: 10.1109/TNNLS.2013.2287890.
  21. Melingui A., Escande C., Benoudjit N., Merzouki R., Mbede J.B., Qualitative approach for forward kinematic modeling of a compact bionic handling assistant trunk. „IFAC Proceedings Volumes”, Vol. 47, No. 3, 2014, 9353–9358, DOI: 10.3182/20140824-6-ZA-1003.01758.
  22. Falkenhahn V., Hildebrandt A., Neumann R., Sawodny O., Dynamic control of the bionic handling assistant. „IEEE/ ASME Transactions on Mechatronics”, Vol. 22, No. 1, 2017, 6–17, DOI: 10.1109/TMECH.2016.2605820.
  23. Galicki M., A closed solution to the inverse kinematics of redundant manipulators. „Mechanism and Machine Theory”, Vol. 26, No. 2, 1991, 221–226, DOI: 10.1016/0094-114X(91)90085-I.
  24. Jacak W., A discrete kinematic model of robots in the Cartesian space. „IEEE Transactions on Robotics and Automation”, Vol. 5, No. 4, 1989, 435–443, DOI: 10.1109/70.88058.
  25. Jacak W., Strategies of searching for collision-free manipulator motions: automata theory approach. „Robotica”, Vol. 7, No. 2, 1989, 129–138, DOI: 10.1017/S0263574700005439.
  26. Machado J.A.T., Lopes A.M., A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators. „Applied Mathematical Modelling”, Vol. 46, 2017, 716–726, DOI: 10.1016/j.apm.2016.11.005.
  27. Maria da Graça Marcos, Machado J.A.T., Azevedo-Perdicoúlis T.-P., A multi-objective approach for the motion planning of redundant manipulators. „Applied Soft Computing”, Vol. 12, No. 2, 2012, 589–599, DOI: 10.1016/j.asoc.2011.11.006.
  28. Galicki M., Morecki A., Finding collision-free trajectory for redundant manipulator by local information available. [In:] RoManSy 9, 1993, 61–71. Springer, DOI: 10.1007/BFb0031432.
  29. Menon M.S., Ravi V.C., Ghosal A., Trajectory planning and obstacle avoidance for hyper-redundant serial robots. „Journal of Mechanisms and Robotics”, Vol. 9, No. 4, 2017, DOI: 10.1115/1.4036571.
  30. Chirikjian G.S., Burdick J.W., Hyper-redundant robot mechanisms and their applications. Proceedings IROS ‚91: IEEE/ RSJ International Workshop on Intelligent Robots and Systems ‚91, DOI: 10.1109/IROS.1991.174447.
  31. Chirikjian G.S., Burdick J.W., A hyper-redundant manipulator. „IEEE Robotics & Automation Magazine”, Vol. 1, No. 4, 1994, 22–29, DOI: 10.1109/100.388263.
  32. Shammas E., Wolf A., Brown H.B., Choset H., New joint design for three-dimensional hyper redundant robots. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Vol. 4, 2003, 3594–3599, DOI: 10.1109/IROS.2003.1249713.
  33. Shammas E., Wolf A., Choset H., Three degrees-of-freedom joint for spatial hyper-redundant robots. „Mechanism and Machine Theory”, Vol. 41, No. 2, 2006, 170–190, DOI: 10.1016/j.mechmachtheory.2005.04.008.
  34. Martín-Barrio A., Roldàn J.J., Terrile S., del Cerro J., Barrientos A., Application of immersive technologies and natural language to hyper-redundant robot teleoperation. „Virtual Reality”, Vol. 24, No. 3, 2020, 541–555, DOI: 10.1007/s10055-019-00414-9.
  35. Cader M., Kiński W., Effect of changing the parameters of the Multi Jet Fusion (MJF) process on the spatial objects produced. „Problemy Mechatroniki: uzbrojenie, lotnictwo, inżynieria bezpieczeństwa”, Vol. 11, Nr 4, 2020, 61–72, DOI: 10.5604/01.3001.0014.5644.
  36. Yang Y., Chen Y., Li Y., Chen M.Z., 3D printing of variable stiffness hyper-redundant robotic arm. 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, 3871–3877, DOI: 10.1109/ICRA.2016.7487575.
  37. Tang L., Wang J., Zheng Y., Gu G., Zhu L., Zhu X., Design of a cable-driven hyper-redundant robot with experimental validation. „International Journal of Advanced Robotic Systems”, Vol. 14, No. 5, 2017, DOI: 10.1177/1729881417734458.
  38. Wingert A., Lichter M.D., Dubowsky S., Hafez M., Hyper-redundant robot manipulators actuated by optimized binary dielectric polymers. [In:] Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), Vol. 4695, 2002, 415–423, DOI: 10.1117/12.475189.