Comparative Analysis of the Guided Bomb Flight Control System for Different Initial Conditions

eng Artykuł w języku angielskim DOI: 10.14313/PAR_253/41

wyślij Marta Grzyb , Zbigniew Koruba Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce

Pobierz Artykuł

Abstract

The article presents research on the influence of initial conditions on the self-guidance of a guided bomb towards a stationary ground target. The aim of the study was to investigate the correlation between the initial tilt angle of the guided bomb and the precision of impact, as well as the time required to reach the surface target. To fulfil this purpose, the flight control system of the guided bomb needed to be designed accordingly. The need to develop these systems arises from emerging information that Ukraine and Israel are converting unguided bombs into precision-guided ones. This justification is based on objective reasons. The article analyses the application of classical controllers: PI, PD and PID. Their task was to accurately guide a stationary ground target under various initial conditions. A preliminary method has been proposed for selecting optimal gain coefficients for the PID controller, which constitutes the main component of the autopilot of the guided bomb flight control system. A proprietary interpolation method was suggested, starting with the use of an optimization function in MATLAB software. The numerical findings are presented in a graphical manner.

Keywords

control system, guided bomb, initialconditions, MATLAB, numerical simulation, optimization, PID controller, proportional navigation

Analiza porównawcza systemu sterowania lotem bomby kierowanej dla różnych warunków początkowych

Streszczenie

W artykule przedstawiono wyniki badań określających wpływ warunków początkowych samonaprowadzania bomby kierowanej na nieruchomy cel naziemny. Skupiono się na analizie zależności początkowego kąta pochylenia bomby kierowanej na dokładność trafienia oraz czas potrzebny na dotarcie do celu naziemnego. W tym celu należało odpowiednio zaprojektować system sterowania lotem bomby kierowanej. Zasadność tych badań wynika między innymi z konieczności rozwoju tych systemów ze względu na pojawiające się informacje, że zarówno Ukraina, jak i Izrael przekształcają niekierowane bomby w ich precyzyjne odpowiedniki. W artykule poddano analizie zastosowanie regulatorów klasycznych: PI, PD oraz PID. Ich zadaniem było precyzyjne naprowadzanie na naziemny cel nieruchomy dla różnych warunków początkowych. Dodatkowo zaproponowana została wstępna metoda doboru optymalnych współczynników wzmocnień dla regulatora PID, stanowiącego główny element autopilota systemu sterowania lotem bomby kierowanej. Wyniki badań numerycznych zostały przedstawione w postaci graficznej.

Słowa kluczowe

bomba kierowana, MATLAB, nawigacja proporcjonalna, optymalizacja, regulator PID, symulacja numeryczna, system sterowania, warunki początkowe

Bibliografia

  1. Elert S., Sokołowski D., Precision gliding bombs used by armed forces and their development trends. “Issues of Armament Technology”, Vol. 148, No. 4, 2018, 61–78, DOI: 10.5604/01.3001.0013.1673.
  2. Ukraine Advances in the South: Russia Unleashes Aerial Guided Bombs. [https://bylinetimes.com/2023/11/23/ukraine-advances-in the-south-russia-unleashes-aerial-guided-bombs] (accessed on 5 January 2024).
  3. Israeli F-35s don’t use „their stealth” while bombing the Gaza Strip. [https://bulgarianmilitary.com/2023/11/15/israeli-f-35s-dont use-their-stealth-while-bombing-the-gaza-strip] (accessed on 5 January 2024).
  4. E-RAPORT MSPO 4/2022 – Lekka bomba kierowana Szakal I od WITU. [www.altair.com.pl/e-report/view?article_id=1368] (accessed on 5 January 2024).
  5. Xu Y., Wang Z., Gao B., Six-Degree-of-Freedom Digital Simulations for Missile Guidance and Control. “Mathematical Problems in Engineering”, 2015, DOI: 10.1155/2015/829473.
  6. Mu L., Wang B., Zhang Y., Feng N., Xue X., Sun W., A Vision-Based Autonomous Landing Guidance Strategy for a Micro-UAV by the Modified Camera View. “Drones”, Vol. 7, No. 6, 2023, DOI: https://doi.org/10.3390/drones7060400.
  7. Kim D., Oh H.-S., Black-box Optimization of PID Controllers for Aircraft Maneuvering Control. “International Journal of Control, Automation and Systems”, Vol. 20, 2022, 703–714, DOI: 10.1007/s12555-020-0915-6.
  8. Głębocki R., Guidance impulse algorithms for air bomb control. “Bulletin of the Polish Academy of Sciences. Technical Sciences”, Vol. 60, No. 4, 2012, 825–833, DOI: 10.2478/v10175-012-0096-4.
  9. Gad A.S., Aly M.S., Smart bomb’s guidance loop design. [In:] Proceedings of the 8th International Conference on Aerospace Sciences & Aviation Technology, Cairo, Egypt, 4–6 May 1999.
  10. Grzyb M., Koruba Z., Analysis of a Hybrid Guided Bomb Control System while Self-guided to a Ground Target. “Problems of Mechatronics, Armament, Aviation, Safety Engineering”, Vol. 13, No. 4, 2022, 23–38, DOI: 10.5604/01.3001.0016.1454.
  11. Han Y., Zheng Z., Chong Y., Integrated guidance and control design for guided bomb with terminal angle constraint. [In:] Proceedings of the 2015 International Conference on Information and Automation, Lijiang, China, 8–10 August 2015, DOI: 10.1109/ICInfA.2015.7279495.
  12. Kim Y., Kim J., Park M., Guidance and Control System Design for Impact Angle Control of Guided Bombs. [In:] Pro ceedings of the International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 27–30 October 2010, DOI: 10.1109/ICCAS.2010.5670209.
  13. Attallah A.S., El-Sheikh G.A., Hafez A.T., Mohammady A.S., Attitude Control of Gliding Bomb using Classical PID and Modified PI-D Controllers. “Journal of Multidisciplinary Engineering Science and Technology”, Vol. 3, No. 4, 2016, 4451–4456.
  14. Li R., Xia Q., Wen Q., Extended optimal guidance law with impact angle and acceleration constraints. “Journal of Systems Engineering and Electronics”, Vol. 25, No. 5, 2014, 868–876, DOI: 10.1109/JSEE.2014.00100.
  15. Liu S., Liu W., Yan B., Liu S., Yin Y., Impact Time Control Guidance Law for Large Initial Lead Angles Based on Sliding Mode Control. [In:] Proceedings of the 2nd International Conference on Signal Processing and Computer Science, Qingdao, China, 20–22 August 2021, DOI: 10.1088/1742-6596/2031/1/012050.
  16. Zhang Y., Wang X., Wu H., Impact time control guidance law with field of view constraint. “Aerospace Science and Techno logy”, Vol. 39, 2014, 361–369, DOI: 10.1016/j.ast.2014.10.002.
  17. Saleem A., Ratnoo A., Lyapunov-Based Guidance Law for Impact Time Control and Simultaneous Arrival. “Journal of Guidance, Control, and Dynamics”, Vol. 39, No. 1, 2016, 164–172, DOI: 10.2514/1.G001349.
  18. Zhu J., Su D., Xie Y., Sun H., Impact time and angle control guidance independent of time-to-go prediction. “Aerospace Science and Technology”, Vol. 86, 2019, 818–825, DOI: 10.1016/j.ast.2019.01.047.
  19. Wang W., Wu M., Chen Z., Liu X., Integrated Guidance-and-Control Design for Three-Dimensional Interception Based on Deep-Reinforcement Learning. “Aerospace”, Vol. 10, No. 2, 2023, DOI: 10.3390/aerospace10020167.
  20. Celis R., Cadarso L., Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Roc kets, 1st ed., 2018, DOI: 10.5772/intechopen.73511.
  21. Kim J., Kim Y., Impact Time Control Guidance with Finite-Time Convergence Based on Pure Proportional Navigation. [In:] Proceedings of the 18th European Control Conference, Napoli, Italy, 25–28 June 2019, DOI: 10.23919/ECC.2019.8795943.
  22. Zhao Y., Sheng Y., Liu X., Unpowered Landing Guidance with Large Initial Condition Error. [In:] Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014, DOI: 10.1109/CGNCC.2014.7007465.
  23. Cho N., Kim Y., Optimality of augmented ideal proportional navigation for maneuvering target interception. “IEEE Transactions on Aerospace and Electronic Systems”, Vol. 52, No. 2, 2016, 948–954, DOI: 10.1109/TAES.2015.140432.
  24. Jeon I.-S., Karpenko M., Lee J.-I., Connections between proportional navigation and terminal velocity maximization guidance. “Journal of Guidance, Control, and Dynamics”, Vol. 43, No. 2, 2020, 383–388, DOI: 10.2514/1.G004672.
  25. Stefański K., Grzyb M., Flight of a Guided Aerial Bomb Along a Vertical Plane in Turbulent Atmosphere. “Problems of Mechatronics, Armament, Aviation, Safety Engineering”, Vol. 10, No. 2, 2019, 19–30, DOI: 10.5604/01.3001.0013.4802.
  26. Gacek J., Motyl K., Sienicki K., Wajszczyk B., The Impact of Control Discreteness on the Process of Guidance of an Anti-Aircraft Short-Range Missile System. “Problems of Mechatronics, Armament, Aviation, Safety Engineering”, Vol. 8, No. 2, 2017, 85–106, DOI: 10.5604/01.3001.0010.1573.
  27. Grzyb M., Analyzing the guidance of an air-to-ground weapon modelled as a constrained system. Doctoral of Thesis, Kielce University of Technology, Poland, 2023.
  28. Kowaleczko G., Modelling the flight dynamics of flying object, 1st ed.; Publisher: Air Force Institute Publishing House, Warsaw, 2018, 22–24.
  29. Szmidt P., Gapiński D., Koruba Z., The analysis of selection optimal parameters of PID controllers for a modified artillery-missile system. [In:] Proceedings of 23rd International Conference Engineering Mechanics, Svratka, Czech Republic, 15–18 May 2017.
  30. Ong J., Pierson B.L., Optimal planar evasive aircraft maneu vers against proportional navigation missiles. “Journal of Guidance, Control, and Dynamics”, Vol. 19, No. 6, 1996, 1210–1215, DOI: 10.2514/3.21773.
  31. Mpanza L.J., Pedro O.O., Optimised Tuning of a PID-Based Flight Controller for a Medium-Scale Rotorcraft. “Algori thms”, Vol. 14, No. 6, 2021, DOI: 10.3390/a14060178.
  32. Sudha G., Deepa S.N., Optimization for PID Control Parameters on Pitch Control of Aircraft Dynamics Based on Tuning Methods. “Applied Mathematics & Information Sciences”, Vol. 10, No. 1, 2016, 343–350, DOI: 10.18576/amis/100136.
  33. MATLAB fmincon – Nonlinear Optimization. [www.mathworks.com/help/optim/ug/fmincon.html] (accessed on 5 January 2024).
  34. Cubic Spline Interpolation – MATLAB & Simulink. [www.mathworks.com/help/curvefit/cubic-spline-interpola tion.html] (accessed on 5 January 2024).
  35. He C., Dong G.-L., Han D.-F., Model and Analysis for Guide Function of Fire Control Simulation System Based on Cubic Spline Interpolation Function. [In:] Proceedings of 7th International Conference on System Simulation and Scientific Computing, Beijing, China, 10–12 October 2008, DOI: 10.1109/ASC-ICSC.2008.4675356.