Dekompozycja liniowych dodatnich układów dyskretnych niecałkowitego rzędu
Streszczenie
Podana zastanie metoda dekompozycji nieosiągalnych dodatnich układów dyskretnych niecałkowitego rzędu na część osiągalną i nieosiągalną. Sformułowane i udowodnione zostaną warunki tej dekompozycji układu nieosiągalnego na część osiągalną i nieosiągalną. Zaproponowana zostanie procedura dekompozycji a jej skuteczność zostanie zilustrowane przykładami numerycznymi.
Słowa kluczowe
dekompozycja Kalmana, dodatnie dyskretne układy liniowe niecałkowitego rzędu
Decomposition of the positive fractional discrete- time linear system
Abstract
The decomposition of unreachable positive fractional discrete-time linear systems into the reachable and unreachable parts is addressed. Conditions for the decomposition of the unreachable system into reachable and unreachable parts are established. A procedure for the decomposition is proposed and illustrated by numerical examples.
Keywords
fractional discrete-time linear systems, Kalman's decomposition
Bibliografia
- P.J. Antsaklis and A.N. Michel, Linear Systems, Birkhauser, Boston 2006.
- L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
- T. Kaczorek, Positive 1D and 2D systems, Springer Verlag, London 2001.
- T. Kaczorek, Decomposition of the pairs (A, B) and (A, C) of positive discrete-time linear systems, Archives of Control Sciences, vol. 20, no. 3, 2010, pp.253-273.
- T. Kaczorek, Positive linear systems with different fractional orders, Bul. Pol. Acad. Sci. Techn. Sci., vol. 58, no.3, 2010.
- T. Kaczorek, Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci. Vol. 18, No. 2, 2008, pp.223-228.
- T. Kaczorek, Selected problems in theory of fractional systems, Publishing Co. of Bialystok University of Technology, Bialystok 2009 (in Polish).
- T. Kaczorek, Linear Control Systems, Vol. 1, J. Wiley, New York 1993.
- T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, New York 1980.
- R.E. Kalman, Mathematical Descriptions of Linear Systems, SIAM J. Control, Vol. 1, 1963, pp.152-192.
- R.E. Kalman, On the General Theory of Control Systems, Proc. Of the First Intern. Congress on Automatic Control, Butterworth, London, 1960, pp.481-493.
- P. Ostalczyk, Epitome of the Fractional Calculus: Theory and its Applications in Automatics, Wydawnictwo Politechniki Łódzkiej, Łódź 2008 (in Polish).
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego 1999.
- A.G. Radwan, A.M. Soliman, A.S. Elwakil and A. Sedeek, On the stability of linear systems with fractional-order elements, Chaos, Solitons and Fractals, vol. 40, no. 5, 2009, pp. 2317-2328.
- H.H. Rosenbrock, State-Space and Multivariable Systems Theory, J. Wiley, New York 1974.
- A. Ruszewski, Stability regions of closed-loop system with time delay inertial plant of fractional order and fractional order PI controller, Bull. Pol. Acad. Sci. Tech., vol. 56, no. 4, 2008, pp.329-332.
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Newark 1993.
- X.J. Wen, Stability analysis of a class of nonlinear fractional-order systems, IEEE Trans. Cir. and Syst.II, vol. 55, Nov., 2008, pp.1178-1182.
- W.A. Wolovich, Linear Multivariable Systems, Springer-Verlag New York 1974.
- B.M. Vinagre, C.A. Monje and A.J. Calderon, Fractional order systems and fractional order control actions, 41th IEEE Conf. on Decision and Control, Las Vegas NV, December 2002.