Evaluation of RMS Current in AC Power Wires Using a High-Speed Infrared System

eng Artykuł w języku angielskim DOI: 10.14313/PAR_253/61

wyślij Błażej Torzyk , Bogusław Więcek Lodz University of Technology, Institute of Electronics, Al. Politechniki 10, B-9 building, 93-590 Lodz, Poland

Pobierz Artykuł

Abstract

This paper presents a new method of the effective value (RMS) of alternating current (AC) in power wires based on infrared radiation (IR) measurement using a high-speed medium wavelength infrared (MWIR) camera. The method called “2-ω” involves measurement of the 100 Hz harmonic of temperature (T100) and is supported by signal analysis in the frequency domain. The article discusses the issue of non-sinusoidal alternating current, which causes much more difficult analyzes compared to sinusoidal current with a frequency of 50/60 Hz. The simulation and measurement results for different current shapes obtained in typical power systems like: a phase-controlled switching regulator, half-wave and full-wave rectifiers, and finally the nonlinear distortion of the AC current due to saturation of the magnetic core, are presented and confirm the linear relation of T100 ~ I2RMS. The main advantage of proposed method is the independence of the measurement results from environmental conditions.

Keywords

current measurement, frequency analysis, infrared camera, non-sinusoidal AC current, power wires, radiation temperature measurement

Ewaluacja wartości skutecznej RMS prądu przemiennego w przewodach elektroenergetycznych z wykorzystaniem radiacyjnego pomiaru temperatury systemami IR

Streszczenie

Artykuł przedstawia nową metodę pomiaru wartości skutecznej (RMS) prądu przemiennego (AC) w przewodach elektroenergetycznych w oparciu o pomiar promieniowania podczerwonego (IR) za pomocą szybkiej kamery IR, o średniej długości fali (MWIR). Metoda zwana „2-ω”, polega na pomiarze harmonicznej temperatury 100 Hz (T100) i analizie sygnału w dziedzinie częstotliwości. W artykule poruszono problematykę niesinusoidalnego prądu przemiennego, który powoduje znacznie trudniejsze analizy w porównaniu z prądem sinusoidalnym o częstotliwości 50/60 Hz. Wyniki symulacji i pomiarów dla różnych kształtów prądu uzyskanych w typowych układach elektroenergetycznych, takich jak: regulator przełączający – sterowany fazowo, prostowniki jednopołówkowe i dwupołówkowe, oraz nieliniowe odkształcenie prądu przemiennego na skutek nasycenia rdzenia magnetycznego, przedstawiono i potwierdzono liniową zależność T100 ~ I2RMS. Główną zaletą proponowanej metody jest niezależność wyników pomiarów od warunków środowiskowych.

Słowa kluczowe

analiza częstotliwości, kamera termowizyjna, niesinusoidalny prąd przemienny, pomiar prądu, pomiar radiacyjny temperatury, przewody zasilające

Bibliografia

  1. Karsenty A., A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices. “Sensors”, Vol. 20, No. 15, 2020, DOI: 10.3390/s20154163.
  2. Zhang Z., Leggate D., Matsuo T., Industrial Inverter Current Sensing with three shunt resistors: Limitations and Solutions. “IEEE Transactions on Power Electronics”, 2017, 4577–4586. DOI: 10.1109/TPEL.2016.2596778.
  3. Ouameur M., Ziadé F., Le Bihan Y., Toward a calculable standard shunt for current measurement at 10 A and up to 1 MHz. “IEEE Transactions on Instrumentation and Measurement”, Vol. 68, No. 6, 2019, 2215–2222, DOI: 10.1109/TIM.2018.2884553.
  4. El-Goharey H.S.K., Mamdouh W.M., On-line analysis of power quality problems in non-sinusoidal/non-linear distri bution systems. “Ain Shams Engineering Journal”, Vol. 14, No. 9, 2023, DOI: 10.1016/j.asej.2023.102266.
  5. Monteiro F.P., Monteiro S.A., Tostes M.E., Bezerra U.H., Using True RMS Current Measurements to Estimate Har monic Impacts of Multiple Nonlinear Loads in Electric Dis tribution Grids. “Energies”, Vol. 12, No. 21, 2019, DOI: 10.3390/en12214132.
  6. Crescentini M., Syeda S.F., Gibiino G.P., Hall-Effect Current Sensors: Principles of Operation and Implementation Techniques. “IEEE Sensors Journal”, Vol. 22, No. 11, 2022, 10137–10151, DOI: 10.1109/JSEN.2021.3119766.
  7. Kadri S., Applications of InAs Hall Effect Sensor. “Sensors and Transducers Journal”, Vol. 119, No. 8, 2010, 22–29.
  8. Silventoinen P., Kuisma M., Review on the Current Measurement systems in Power Electronics. International Con ference on Efficient Welding in Industrial Applications (ICEWIA), Lappeenranta, Finland, 1999.
  9. Lalwani A.V., Yalamarthy A.S., Alpert H.S., Holiday M., Eisner S.R., Chapin C.A., Senesky D.G., Hall-Effect Sensor Technique for No Induced Voltage in AC Magnetic Field Measurements Without Current Spinning. “IEEE Sensors Journal”, Vol. 22, No. 2, 2022, 1245–1251, DOI:10.1109/JSEN.2021.3130527.
  10. Liu J., Sanli A.S., Wang Y., Liu Ch., Error Compensation of closed Loop Hall Effect Current Sensors. IEEE Interna tional Workshop on Applied Measurements for Power Systems (AMPS), Germany, Aachen, September 26–28, 2012.
  11. Flores-Arias J.-M., Ortiz-Lopez M., Latorre F.J.Q., Belli do-Outeiriño F.J., Moreno-Muñoz A., A Memory-Efficient True-RMS Estimator in a Limited-Resources Hardware. “Energies”, Vol. 12, No. 9, 2019, DOI: 10.3390/en12091699.
  12. Wang K., Yang X., Li H., Wang L., A High-Bandwidth Integrated Current Measurement for Detecting Switch ing Current of Fast GaN Devices. “IEEE Transactions on Power Electronics”, Vol. 33, No. 7, 2018, 6199–6210, DOI: 10.1109/TPEL.2017.2749249.
  13. Nanyan A.N., Isa M., Hamid H.A., Rohani M.N.K.H., Ismail B., The Rogowski Coil Sensor in High Current Application: A Review. IOP Conference Series Materials Science and Engineering. 2018, Vol. 318, DOI: 10.1088/1757-899X/318/1/012054.
  14. Samini M.H., Mahari A., Farahnakin M.A., Mohseni H., The Rogowski Coil Principles and Applications: A Review. “IEEE Sensors Journal”, Vol. 15, No. 2, 2014, 651–658, DOI: 10.1109/JSEN.2014.2362940.
  15. Kato H., Saito M., Takahashi Y., Yoshino K., Domae A., Kiryu S., Nobu-Hisa K., Development and Evaluation of a Simple Shunt Module for High DC Current Measurement. “IEEE Transactions on Power Delivery”, Vol. 38, No. 3, 2023, 1656–1664, DOI: 10.1109/TPWRD.2022.3224072.
  16. Voljc B., Lindic M., Lapuh R., Direct Measurement of AC Current by Measuring the Voltage Drop on the Coaxial Current Shunt. “IEEE Transactions on Instrumentation and Measurement”, Vol. 58, No. 4, 2009, 863–867, DOI: 10.1109/TIM.2008.2007074.
  17. Pogliano U., Bosco G.C., Serazio D., Coaxial Shunts as AC-DC Transfer Standards of Current. “IEEE Transactions on Instrumentation and Measurement”, Vol. 58, No. 4, 2009, 872–877, DOI: 10.1109/TIM.2008.2008469.
  18. Malinowski M., Kubiczek K., Kampik M., A precision coaxial current shunt for current AC-DC transfer. “Measurement”, Vol. 176, 2021, DOI: 10.1016/j.measurement.2021.109126.
  19. Shillaber L., Jiang Y., Ran L., Long T., Ultrafast Current Shunt (UFCS): A Gigahertz Bandwidth Ultra Low Inductance Current Sensor. “IEEE Transactions on Power Electronics”, Vol. 37, No. 12, 2022, 15493–15504, DOI: 10.1109/TPEL.2022.3184638.
  20. Sydenham P.H., Thorn R., Handbook of Measuring System Design, Chapter: 202 Current Measurement, 3 Volume Set, 1st Edition, Wiley, 2005, DOI: 10.1002/0471497398.mm320.
  21. Silva J.I., Sousa V., Sarmiento P., Gómez J.R, Viego P.R., Quispe E.C., Effects of power electronics devices on the Energy quality of an administrative building. “International Journal of Power Electronics and Drive Systems”, Vol. 10, No. 4, 2019, 1951–1960, DOI: 10.11591/ijpeds.v10.i4.pp1951–1960.
  22. Mohassel R.R., Fung A., Mohammadi F., Raahemifar K., A survey on Advanced Metering Infrastructure. “International Journal of Electrical Power and Energy Systems”, Vol. 63, 2014, 473–484. DOI: 10.1016/j.ijepes.2014.06.025.
  23. Torzyk B., Więcek B., A method of RMS current measure ment especially in low and medium voltage power lines and cable. Polish patent submission. No. 428676, 2019.
  24. Torzyk B., Więcek B., Measurement of High-Frequency sub-noise temperature signal and RMS current using a single-detector high-speed IR system. “Pomiary Automatyka Robotyka”, Vol. 27, No. 4, 2023. 53–56, DOI: 10.14313/PAR_250/53.
  25. Torzyk B., Więcek B., Second-Harmonic Contactless Method for Measurement of RMS Current using a standard Infrared Camera. “IEEE Transactions on Instrumentation and Measurement”, Vol. 70, 2021, DOI: 10.1109/TIM.2021.3077676.
  26. Kałuża M., Hatzopoulos A., Application of extension rings in thermography for electronic circuits imaging. “Quanti tative InfraRed Thermography Journal”, Vol. 21, 2024, 50–68, DOI: 10.1080/17686733.2022.2146419