Optymalne sterowanie hybrydowe układem giroskopowym
Streszczenie
W pracy dokonana została analiza doboru optymalnych sterowań (LQR, SMC oraz PD) mechatronicznego układu giroskopowego znajdującego zastosowanie w głowicach skanująco-śledzących obiektów ruchomych takich jak: statki kosmiczne, bezzałogowe pojazdy lądowe, drony latające, czy też samonaprowadzające pociski rakietowe. Za kryterium jakości przyjęta została całka z bezwzględnej wartości błędu odchylenia ruchu zadanego od ruchu rzeczywistego obiektu ruchomego oraz całka z kwadratu stanu i sterowania. Przedstawione zostały wyniki badań symulacji komputerowych.
Słowa kluczowe
regulator LQR, regulator PD, regulator SMC, śledzenie celu, sterowanie hybrydowe, układ giroskopowy, żyroskop
Optimal Hybrid Control of a Gyroscope System
Abstract
The paper analyses the selection of optimal controllers (LQR, SMC and PD) for a mechatronic gyroscope system used in scanning-tracking heads of mobile objects such as spacecrafts, unmanned land vehicles, flying drones or self-guided missiles. The integral of the absolute value of the deviation error of the set motion from the real moving object and the integral of the square of the state and control have been taken as the quality criterion. The results of computer simulation studies are presented.
Keywords
gyroscope, hybrid control, LQR controller, PD controller, SMC controller, target tracking
Bibliografia
- Zarchan P., Tactical and Strategic Missile Guidance. AiAA Inc., 2012.
- Krzysztofik I., Takosoglu J., Koruba Z., Selected methods of control of the scanning and tracking gyroscope system mounted on a combat vehicle. “Annual Reviews in Control”, Vol. 44, 2017, 173–182, DOI: 10.1016/j.arcontrol.2016.10.003.
- Krzysztofik I., Koruba Z., Application of an optimal control algorithm for a gyroscope system of a homing air-to-air missile. “Aviation”, Vol. 25, No. 1, 2021, 41–49, DOI: 10.3846/aviation.2021.13899.
- Krzysztofik I., Koruba Z., Study on the Sensitivity of a Gyroscope System Homing a Quadcopter onto a Moving Ground Target under the Action of External Disturbance, “Energies”, Vol. 14, No. 6, 2021, DOI: 10.3390/en14061696.
- Sargolzaei M., Yaghoobi M., Yazdi Rajab Asgharian Ghannad, Modeling and synchronization of chaotic gyroscopes using TS fuzzy approach. “Advance in Electronic and Electric Engineering”, Vol. 3, No. 3, 2013, 339–346.
- Wang C.-C., Yau H.-T., Nonlinear dynamic analysis and sliding mode control for a gyroscope system. “Nonlinear Dynamics”, Vol. 66, 2011, 53–65, DOI: 10.1007/s11071-010-9910-4.
- Chen S.-C., Kuo C.-L., Lin C.-H., Hsu C.-H., Tsui C.-K., Applications of fuzzy sliding mode control for a gyroscope system. “Abstract and Applied Analysis”, 2013, DOI: 10.1155/2013/931285.
- Roopaei M., Jahromi M.Z., John R., Lin T.-C., Unknown nonlinear chaotic gyros synchronization using adaptive fuzzy sliding mode control with unknown dead-zone input, “Communications in Nonlinear Science and Numerical Simulation”, Vol. 15, No. 9, 2010, 2536–2545, DOI: 10.1016/j.cnsns.2009.09.022.
- Polo M.P., Albertos P., Galiano J.A.B., Tuning of a PID controlled gyro by using the bifurcation theory. “Systems & Control Letters”, Vol. 57, No. 1, 2008, 10–17, DOI: 10.1016/j.sysconle.2007.06.007.
- Kojima H., Nakamura R., Keshtkar S., Model predictive steering control law for double gimbal scissored-pair control moment gyros. “Acta Astronautica”, Vol. 183, 2021, 273–285, DOI: 10.1016/j.actaastro.2021.03.023.
- Montoya-Chairez J., Santibanez V., Moreno-Valenzuela J., Adaptive control schemes applied to a control moment gyroscope of 2 degrees of freedom. “Mechatronics”, Vol. 57, 2019, 73–85, DOI: 10.1016/j.mechatronics.2018.11.011.
- Lungu M., Control of double gimbal control moment gyro systems using the backstepping control method and a nonlinear disturbance observer, “Acta Astronautica”, Vol. 180, 2021, 639–649, DOI: 10.1016/j.actaastro.2020.10.040.
- Gapiński D., Stefański K., A Control of Modified Optical Scanning And Tracking Head To Detection And Tracking Air Targets, “Solid State Phenomena”, Vol. 210, 2014, 145–155, DOI: 10.4028/www.scientific.net/SSP.210.145.
- Awrejcewicz J., Koruba Z., Classical Mechanics: Applied Mechanics and Mechatronics, “Advances in Mechanics and Mathematics”, Vol. 30, 2012, Springer, DOI: 10.1007/978-1-4614-3978-3.
- Utkin V.I., Sliding Mode Control: Mathematical Tools, Design and Applications. [In:] Nonlinear and Optimal Control Theory, Vol. 1932, 2008, 289–347, Springer, DOI: 10.1007/978-3-540-77653-6_5
- Tewari A., Modern Control Design with MATLAB and Simulink, 2002. John Wiley & Sons.
- Baranowski L., Effect of the mathematical model and integration step on the accuracy of the results of computation of artillery projectile flight parameters. “Bulletin of the Polish Academy of Sciences: Technical Sciences”, Vol. 61, No. 2, 2013, 475–484, DOI: 10.2478/bpasts-2013-0047.