Extremal Problems for Infinite Order Parabolic Systems with Boundary Conditions Involving Integral Time Lags
Abstract
Extremal problems for integral time lag infinite order parabolic systems are studied in the paper. An optimal boundary control problem for distributed infinite order parabolic systems in which integral time lags appear in the Neumann boundary conditions is solved. Such equations constitute in a linear approximation a universal mathematical model for many diffusion processes (e.g., modeling and control of heat transfer processes). The time horizon is fixed. Using the Dubovicki-Milutin framework, the necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance indexes and constrained control are derived.
Keywords
boundary control, infinite order parabolic systems, integral time lags
Problemy ekstremalne dla parabolicznych systemów nieskończonego rzędu z warunkami brzegowymi, w których występują całkowe opóźnienia czasowe
Streszczenie
Zaprezentowano ekstremalne problemy dla systemów parabolicznych nieskończonego rzędu z całkowymi opóźnieniami czasowymi. Rozwiązano problem optymalnego sterowania brzegowego dla systemów parabolicznych nieskończonego rzędu, w których całkowe opóźnienia czasowe występują w warunkach brzegowych Neumanna. Tego rodzaju równania stanowią w liniowym przybliżeniu uniwersalny model matematyczny dla procesów dyfuzyjnych. Korzystając z metody Dubowickiego-Milutina wyprowadzono warunki konieczne i wystarczające optymalności dla problemu liniowo-kwadratowego.
Słowa kluczowe
całkowe opóźnienia czasowe, sterowanie brzegowe, systemy paraboliczne nieskończonego rzędu
Bibliografia
- Dubinskii Ju.A., Sobolev spaces of infinite order and behavior of solution of some boundary value problems with unbounded increase of the order of the equation, “Matiematiczeskii Sbornik”, Vol. 98, 1975, 163–184.
- Dubinskii Ju.A., Non-trivality of Sobolev spaces of infinite order for a full Euclidean space and a Tour’s, “Matiematiczeskii Sbornik”, Vol. 100, 1976, 436–446.
- Dubinskii Ju.A., About one method for solving partial differential equations, “Doklady Akademii Nauk SSSR”, Vol. 258, 1981, 780–784.
- Gilbert E.S., An iterative procedure for computing the maximum of a quadratic form on a convex set, “SIAM Journal on Control”, Vol. 4, No. 1, 1966, 61–80, DOI: 10.1137/0304007.
- Girsanov I.V., Lectures on Mathematical Theory of Extremum Problems, Publishing House of the University of Moscow, Moscow 1970 (in Russian).
- Kowalewski A., On optimal control problem for parabolic-hyperbolic systems, “Problems of Control and Information Theory”, Vol. 15, 1986, 349–359.
- Kowalewski A., Optimization of parabolic systems with deviating arguments, “International Journal of Control”, Vol. 72, No. 11, 1999, 947–959, DOI: 10.1080/002071799220498.
- Kowalewski A., Optimal Control of Infinite Dimensional Distributed Parameter Systems with Delays, AGH University of Science and Technology Press, Cracow, 2001.
- Kowalewski A., Miśkowicz M., Extremal problems for time lag parabolic systems, Proceedings of 21st International Conference on Process Control (PC), 446–451, Strbske Pleso, Slovakia, June 6-9, 2017, DOI: 10.1109/PC.2017.7976255.
- Kowalewski A., Extremal problems distributed parabolic systems with boundary conditions involving time-varying lags, Proceedings of 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), 447–452, Międzyzdroje, Poland, August 28–31, 2017.
- Kowalewski A., Extremal problems for parabolic systems with time-varying lags, “Archives of Control Sciences”, Vol. 28, No. 1, 2018, 89–104, DOI: 10.24425/119078
- Kowalewski A., Extremal problems distributed parabolic systems with multiple time-varying lags, Proceedings of 23rd International Conference on Methods and Models in Automation and Robotics (MMAR), 791–796, Międzyzdroje, Poland, August 27-30, 2018.
- Kowalewski A., Miśkowicz M., Extremal problems for integral time lag parabolic systems, Proceedings of 24th International Conference on Methods and Models in Automation and Robotics (MMAR), 7–12, Międzyzdroje, Poland, August 26–29, 2019.
- Kowalewski A., Duda J., On some optimal control problem for a parabolic system with boundary condition involving a time-varying lag, “IMA Journal of Mathematical Control and Information”, Vol. 9, No. 2, 1992, 131–146, DOI: 10.1093/imamci/9.2.131.
- Kowalewski A., Krakowiak A., Time-optimal boundary control of an infinite order parabolic system with time lags, “International Journal of Applied Mathematics and Computer Science”, Vol. 18, No. 2, 2008, 189–198.
- Lions J.L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin-Heidelberg, 1971.
- Lions J.L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, Vols 1 and 2, Springer-Verlag, Berlin-Heidelberg, 1972.
- Maslov V.P., Operators Methods, “Nauka”, Moscow 1973 (in Russian).
- Miśkowicz M. (Ed.), Event-Based Control and Signal Processing, CRC Press, 2016.
- Ioffe A.D., Tihomirov V.M., Theory of Extremal Problems, Elsevier, 2009.