Automatyczna generacja wirtualnych elementów infrastruktury kolejowej
Streszczenie
Niniejszy artykuł poświęcono zagadnieniom modelowania wirtualnego świata 3D na potrzeby symulatorów kolejowych oraz problematyce tworzenia mapy. Zaproponowano algorytm wykorzystujący metody sztucznej inteligencji do wykrywania, klasyfikacji i umieszczania obiektów infrastruktury kolejowej z nagrania wideo oraz danych GPS w wirtualnym świecie 3D. Proponowane rozwiązanie, wspierające automatyczną generację wirtualnych elementów infrastruktury kolejowej, stanowi istotną nowość w obszarze badań.
Słowa kluczowe
detekcja obiektów, generacja świata 3D, GIS, GPS system, konwolucyjne sieci neuronowe, OSM, symulator kolejowy, symulator ruchu drogowego
Automatic Generation of Virtual Railway Infrastructure Elements
Abstract
This article is devoted to the issues of modeling a 3D virtual world for railroad simulators and the problems of creating a map for such a simulator. An algorithm using artificial intelligence methods for detection, classification, and place railway infrastructure objects from video recordings in a 3D virtual world, as well as GPS data has been proposed. The proposed solution, supporting automatic generation of virtual elements of railway infrastructure, is a significant innovation in the field of research.
Keywords
3D world generation, convolutional neural nets, GIS, GPS system, object detection, OpenStreetMap, OSM, railway simulator, traffic simulator
Bibliografia
- Nguyen J., Powers S.T., Urquhart N., Farrenkopf T., Guckert M., An overview of agent-based traffic simulators, “Transportation Research Interdisciplinary Perspectives”, Vol. 12, 2021, DOI: 10.1016/J.TRIP.2021.100486.
- Amara Y., Amamra A., Khemis S., Raw GIS to 3D road modeling for real-time traffic simulation, “Visual Compu ter”, Vol. 38, 2022, 239–256, DOI: 10.1007/S00371-020-02013-1/TABLES/4.
- Khayyal H.K., Zeidan Z.M., Beshr A.A.A., Creation and Spatial Analysis of 3D City Modeling based on GIS Data, “Civil Engineering Journal”, Vol. 8, No. 1, 2022, 105–123, DOI: 10.28991/CEJ-2022-08-01-08.
- Salleh S., Ujang U., Azri S., Virtual 3D Campus for Uni versiti Teknologi Malaysia (UTM), “ISPRS International Journal of Geo-Information”, Vol. 10, No. 6, 2021, DOI: 10.3390/ijgi10060356.
- Keil J., Edler D., Schmitt T., Dickmann F., Creating Immersive Virtual Environments Based on Open Geospatial Data and Game Engines, “KN – Journal of Cartography and Geographic Information”, Vol. 71, 2021, 53–65, DOI: 10.1007/s42489-020-00069-6.
- Girindran R., Boyd D.S., Rosser J., Vijayan D., Long G., Robinson D., On the Reliable Generation of 3D City Mod els from Open Data, “Urban Science”, Vol. 4, No. 4, 2020, DOI: 10.3390/urbansci4040047.
- Yang X., Delparte D., A Procedural Modeling Approach for Ecosystem Services and Geodesign Visualization in Old Town Pocatello, Idaho, “Land”, Vol. 11, No. 8, 2022, DOI: 10.3390/LAND11081228.
- Wang H., Wu Y., Han X., Xu M., Chen W., Automatic generation of large-scale 3D road networks based on GIS data, “Computers & Graphics”, Vol. 96, 2021, 71–81, DOI: 10.1016/J.CAG.2021.02.004.
- Župan R., Vinković A., Nikçi R., Pinjatela B., Automatic 3D Building Model Generation from Airborne LiDAR Data and OpenStreetMap Using Procedural Modeling, “Information”, Vol. 14, No. 7, 2023, DOI: 10.3390/info14070394.
- Meng Z., Du X., Sottovia P., Foroni D., Axenie C., Wieder A., Eckhoff D., Bortoli S., Knoll A., Sommer C., Topology-Preserving Simplification of OpenStreetMap Network Data for Large-scale Simulation in SUMO, “SUMO Conference Proceedings”, Vol. 3, 2022, 181–197, DOI: 10.52825/scp.v3i.111.
- Jafari A., Both A., Singh D., Gunn L., Giles-Corti B., Building the road network for city-scale active transport simulation models, “Simulation Modelling Practice and Theory”, Vol. 114, 2022, DOI: 10.1016/j.simpat.2021.102398.
- Tabet F., Pentyala S., Patel B.H., Hendawi A., Cao P., Song A., Govind H., Ali M., OSMRunner: A System for Exploring and Fixing OSM Connectivity, 22nd IEEE International Conference on Mobile Data Management (MDM), IEEE, 2021, 193–200, DOI: 10.1109/MDM52706.2021.00039.
- Kilsedar C.E., Brovelli M.A., Multidimensional Visualization and Processing of Big Open Urban Geospatial Data on the Web, “ISPRS International Journal of Geo-Information”, Vol. 9, No. 7, 2020, DOI: 10.3390/IJGI9070434.
- Badwi I.M., Ellaithy H.M., Youssef H.E., 3D-GIS Parametric Modelling for Virtual Urban Simulation Using CityEngine, “Annals of GIS”, Vol. 28, No. 3, 2022, 325–341, DOI: 10.1080/19475683.2022.2037019.
- Flenniken J.M., Stuglik S., Iannone B.V., Quantum GIS (QGIS): An introduction to a free alternative to more costly GIS platforms. “EDIS”, Vol. 2020, No. 2, DOI: 10.32473/edis-fr428-2020.
- Smaczyński M., Horbiński T., Creating a 3D Model of the Existing Historical Topographic Object Based on Low-Level Aerial Imagery, “KN – Journal of Cartography and Geographic Information”, Vol. 71, 2021, 33–43, DOI: 10.1007/S42489-020-00061-0/FIGURES/8.
- Chołodowicz E., Lisiecki P., Lech P., Hybrid Algorithm for the Detection and Recognition of Railway Signs, 2020, 337–347, DOI: 10.1007/978-3-030-19738-4_34.
- Liu W., Wang Z., Zhou B., Yang S., Gong Z., Real-time Signal Light Detection based on Yolov5 for Railway, IOP Conference Series: Earth and Environmental Science”, Vol. 769, 2021, DOI: 10.1088/1755-1315/769/4/042069.
- Ye T., Zhang X., Zhang Y., Liu J., Railway Traffic Object Detection Using Differential Feature Fusion Convolution Neural Network, “IEEE Transactions on Intelligent Transportation Systems”, Vol. 22, No. 3, 2021, 1375–1387, DOI: 10.1109/TITS.2020.2969993.
- Zhang J., Xie Z., Sun J., Zou X., Wang J., A Cascaded R-CNN with Multiscale Attention and Imbalanced Samples for Traffic Sign Detection, “IEEE Access”, Vol. 8, 2020, 29742–29754, DOI: 10.1109/ACCESS.2020.2972338.
- Tecław M. Szłapczyński M., Generacja terenu przestrzennego za pomocą edytora Hermes, „Pomiary Automatyka Robotyka”, R. 28, Nr 2, 2024, 113–118, DOI: 10.14313/PAR_252/113.