Simulation of Cascade Control for Two Rotor Aerodynamical System Using FOPID and PID Controllers

eng Artykuł w języku angielskim DOI: 10.14313/PAR_256/29

wyślij Jakub Żegleń-Włodarczyk AGH University of Krakow, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Pobierz Artykuł

Abstract

Two Rotor Aerodynamical System is a non-linear system in which cross-coupling occurs. In this specific case the individual rotors of the system affect both the system angles: azimuth and pitch. Therefore, both values must be used in each feedback loop. This makes it possible to use cascade control. It was decided to use FOPID as primary controllers and PID as secondary. For comparison purposes, an analogous control system with only PIDs was prepared. The coefficients were determined using the GWO algorithm. All simulations were performed in the MATLAB/Simulink environment. In addition to comparing the values of the cost function, the execution time of individual controllers was also checked.

Keywords

execution time, FOPID controller, GWO algorithm, optimization, ORA approximation, PID controller, TRAS, Two Rotor Aerodynamical System

Symulacja sterowania kaskadowego dla dwurotorowego systemu aerodynamicznego z wykorzystaniem regulatorów FOPID oraz PID

Streszczenie

Dwurotorowy system aerodynamiczny to nieliniowy system, w którym występuje sprzężenie krzyżowe. W przypadku tego układu poszczególne wirniki wpływają na obie mierzone wartości: kąt azymutowy i kąt nachylenia. W związku z tym obie wartości muszą być używane w każdej pętli sprzężenia zwrotnego. Umożliwia to realizację kaskadowego układu sterowania. Zdecydowano się na zastosowanie FOPID jako regulatorów nadrzędnych i PID jako regulatorów podrzędnych. W celach porównawczych przygotowano analogiczny układ regulacji z samymi PID. Współczynniki wyznaczono za pomocą algorytmu Grey Wolf Optimizer (GWO). Wszystkie symulacje wykonano w środowisku MATLAB/Simulink. Oprócz porównania wartości funkcji kosztu sprawdzono również czas wykonania poszczególnych regulatorów.

Słowa kluczowe

algorytm GWO, aproksymacja ORA, czas wykonania, dwurotorowy system aerodynamiczny, optymalizacja, regulator FOPID, regulator PID, TRAS

Bibliografia

  1. Khosravi M., Enayati S., Saeedi H., Pishro-Nik H., Multi-Purpose Drones for Coverage and Transport Applications, “IEEE Transactions on Wireless Communications”, Vol. 20, No. 6, 2021, 3974–3987, DOI: 10.1109/TWC.2021.3054748.
  2. Nožica D., Blažević D., Keser T., Unmanned Aerial Vehicle Swarm Uses Wi-Fi to Search for Stranded People in Remote Areas Embedded devices as active scanners in search for Wi-Fi-enabled mobile phones, 10th Mediterranean Conference on Embedded Computing (MECO), 2021, DOI: 10.1109/MECO52532.2021.9460147.
  3. Ahmad M., Ali A., Choudhry M.A., Fixed-Structure H∞ Controller Design for Two-Rotor Aerodynamical System (TRAS), “Arabian Journal for Science and Engineering”, Vol. 41, No. 9, 2016, 3619–3630, DOI: 10.1007/s13369-016-2232-1.
  4. Almtireen N., Elmoaqet H., Ryalat M., Linearized Modelling and Control for a Twin Rotor System, “Automatic Control and Computer Sciences”, Vol. 52, 2018, 539–551, DOI: 10.3103/S0146411618060020.
  5. Ajangnay M.O., Optimal PID controller parameters for vector control of induction motors, SPEEDAM 2010, 959–965, DOI: 10.1109/SPEEDAM.2010.5545043.
  6. Kaijuka P., Dixon R., Ward C.P., Dutta S., LQR Control Applied to a Novel Track Switch Actuator, UKACC 12th International Conference on Control (CONTROL), 2018, 385–385, DOI: 10.1109/CONTROL.2018.8516839.
  7. Zeilinger M.N., Jones C.N., Raimondo D.M., Morari M., Real-time MPC – Stability through robust MPC design, Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, 3980–3986, DOI: 10.1109/CDC.2009.5400903.
  8. Sekine S., Nishimura M., Application of fuzzy neural network control to automatic train operation, Proceedings of 1995 IEEE International Conference on Fuzzy Systems, Vol. 5, 1995, 39–40, DOI: 10.1109/FUZZY.1995.409917.
  9. Bennett S., Development of the PID controller, “IEEE Control Systems Magazine”, Vol. 13, No. 6, 1993, 58–62, DOI: 10.1109/37.248006.
  10. Zhai Q., Xia X., Feng S., Huang M., Optimization Design of LQR Controller Based on Improved Whale Optimization Algorithm, 2020 3rd International Conference on Information and Computer Technologies (ICICT), 2020, 380–384, DOI: 10.1109/ICICT50521.2020.00067.
  11. Sarangi S.K., Panda R., Priyadarshini S., Sarangi A., A new modified firefly algorithm for function optimization, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, 2944–2949, DOI: 10.1109/ICEEOT.2016.7755239.
  12. Singh K., Singh A.V., Khatri S.K., Advanced Gameplay Strategy Based on Grey Wolf Optimization, 4th International Conference on Information Systems and Computer Networks (ISCON), 2019, 183–185, DOI: 10.1109/ISCON47742.2019.9036295.
  13. Katugampola U., A New Approach to Generalized Fractional Derivatives, “Bulletin of Mathematical Analysis and Applications”, Vol. 6, No. 4, 2014, 1–15, DOI: 10.48550/arXiv.1106.0965.
  14. Oustaloup A., Levron F., Mathieu B., Nanot F.M., Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, No. 1, 2000, 25–39, DOI: 10.1109/81.817385.
  15. Anbumani K., Ranihemamalini R., Pechinathan G., GWO based tuning of PID controller for a heat exchanger process, Third International Conference on Sensing, Signal Processing and Security (ICSSS), 2017, DOI: 10.1109/SSPS.2017.8071631.