System półautonomicznego sterowania tandemem kosiarek do koszenia terenów przydrożnych

Streszczenie
Dbanie o pas drogowy wymaga regularnego koszenia rowów i terenów przydrożnych. Jest to realizowane głównie za pomocą kosiarek montowanych na ciągnikach rolniczych. Tendencją jest wprowadzanie autonomicznych systemów koszących, jednak do tej pory pojawiło się szereg rozwiązań autonomicznych robotów koszących krótką trawę (przydomowe trawniki, pola golfowe), mało jest rozwiązań autonomicznych kosiarek do koszenia trawy wysokiej. W artykule opisano uwarunkowania determinujące prowadzenie prac nad rozwojem kosiarek do koszenia trawy. Przedstawiono propozycję półautonomicznego systemu sterowania tandemem kosiarek do koszenia terenów przydrożnych. Zaprojektowano i zbudowano w pełni funkcjonalny zestaw składający się z kosiarek: kołowej i gąsienicowej, układu zdalnego sterowania pierwszą kosiarką oraz komputera wysokiego poziomu z oprogramowaniem, zapewniającym wyznaczenie trasy przejazdu dla drugiej kosiarki. Seria testów poligonowych pozwoliła ocenić skuteczność i praktyczność proponowanego rozwiązania. Wydajność koszenia oceniano na podstawie spójności kolejnych ścieżek koszenia. Wyniki wskazują, że rozwój opracowanego systemu znacząco poprawi efektywność pracy i bezpieczeństwo pracowników.
Słowa kluczowe
kosiarka autonomiczna, koszenie, nawigacja, planowanie trasy
A System of Semi-Autonomous Tandem Mowers for Mowing Roadside Area
Abstract
Maintaining the road requires regular mowing of ditches and roadside areas. This is mainly done using mowers mounted on agricultural tractors. The trend is to introduce autonomous mowing systems, but so far a number of autonomous solutions for mowing short grass (home lawns, golf courses), and there are few autonomous mower solutions for mowing tall grass on the market. The first part of the article describes the conditions determining work on the development of lawn mowers. Then, a proposal for a semi-autonomous control system for tandem mowers for mowing roadside areas was presented. As part of its construction, a fully functional set was designed and built, consisting of two mowers: wheeled and tracked, a remote control system for the first mower, and a high-level computer with implemented software ensuring autonomous mowing with the second mower under active operator supervision. A series of field tests conducted allowed us to assess the effectiveness and practicality of the proposed solution. Mowing efficiency was assessed by the consistency of subsequent mowing paths. The obtained results indicate that the development of the developed system will significantly improve mowing efficiency and increase employee safety.
Keywords
autonomous mower, mowing, navigation, route planning
Bibliografia
- Daniyan I., Balogunb V., Adeoduc A., Oladapod B., Peter J.K., Mpofu K., Development and performance evaluation of a robot for lawn mowing, “Procedia Manufacturing”, Vol. 49, 2020, 42–48, DOI: 10.1016/j.promfg.2020.06.009.
- Nishimura Y., Yamaguchi T., Grass Cutting Robot for Inclined Surfaces in Hilly and Mountainous Areas, “Sensors”, Vol. 23, No. 1, 2023, DOI: 10.3390/s23010528.
- Tribelhorn B., Dodds Z., Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education, [In:] Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007, 1393–1399, DOI: 10.1109/ROBOT.2007.363179.
- Aponte-Roa D.A., Collazo X., Goenaga M., Espinoza A., Vazquez K., Development and Evaluation of a Remote Controlled Electric Lawn Mower, [In:] Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019, DOI: 10.1109/CCWC.2019.8666455.
- Hicks R.W., Hall E.L., A Survey of robot lawn mowers. Intelligent Robots and Computer Vision XIX: Algorithms, Techniques, and Active Vision; Casasent, D.P., Ed.; SPIE: Bellingham, WA, USA, 2000, DOI: 10.1117/12.403770.
- Sahin H., Givenc L., Household robotics: Autonomous devices for vacuuming and lawn mowing [Applications of control], “IEEE Control System Magazine”, Vol. 27, No. 2, 2007, 20–96, DOI: 10.1109/MCS.2007.338262.
- Patterson A., Yuan Y., Norris W., Development of User-Integrated Semi-Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and Proposed Architecture, “AgriEngineering”, Vol. 1, No. 3, 2019, 453–474, DOI: 10.3390/agriengineering1030033.
- Norris W.R., Patterson A.E., Short Discussion Essay Automation Autonomy and Semi-Autonomy A Brief Definition Relative to Robotics and Machine Systems, 2019, [www.researchgate.net/publication/334414845].
- Höffmann M., Patel S., Büskens Ch., Optimal Coverage Path Planning for Agricultural Vehicles with Curvature Constraints, “Agriculture”, Vol. 13, No. 11, 2023, DOI: 10.3390/agriculture13112112.
- Peng Y., Qu D., Zhong Y., Xie S., Luo J., Gu J., The obstacle detection and obstacle avoidance algorithm based on 2-D lidar, 2015 IEEE International Conference on Information and Automation, Lijiang, China, 2015, 1648–1653, DOI: 10.1109/ICInfA.2015.7279550.
- Ghorpade D., Thakare A.D., Doiphode S., Obstacle Detection and Avoidance Algorithm for Autonomous Mobile Robot using 2D LiDAR, 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 2017, DOI: 10.1109/ICCUBEA.2017.8463846.
- Hague T., Marchant J.A., Tillett N.D., Ground based sensing systems for autonomous agricultural vehicles, “Computers and Electronics in Agriculture”, Vol. 25, No. 1–2, 2000, 11–28, DOI: 10.1016/S0168-1699(99)00053-8.
- Kaczmarek A., Rohm W., Klingbeil L., Tchórzewski J., Experimental 2D extended Kalman filter sensor fusion for low-cost GNSS/IMU/Odometers precise positioning system, “Measurement”, Vol. 193, 2022, DOI: 10.1016/j.measurement.2022.110963.
- Susnea I., Mînzu V., Vasiliu G., Simple, real-time obstacle avoidance algorithm for mobile robots, Proceedings of the 8th WSEAS International Conference on Computational Intelligence Man-Machine Systems and Cybernetics (CIMMACS ‘09), 2009, 24–29, DOI: 10.5555/1736097.1736102.
- Larsen T.D., Hansen K.L., Andersen N.A., Ravn O., Design of Kalman filters for mobile robots; evaluation of the kinematic and odometric approach, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No. 99CH36328), Kohala Coast, HI, USA, Vol. 2, 1999, 1021–1026, DOI: 10.1109/CCA.1999.801027.
- Ben-Ari M., Mondada F., Robotic Motion and Odometry, [In:] “Elements of Robotics”, Springer, Cham, 2018, DOI: 10.1007/978-3-319-62533-1_5.
- Rovira-Más F., Chatterjee I., Sáiz-Rubio V., The role of GNSS in the navigation strategies of cost-effective agricultural robots, “Computers and Electronics in Agriculture”, Vol. 112, 2015, 172–183, DOI: 10.1016/j.compag.2014.12.017.
- Ferreira A., Matias B., Almeida J., Silva E., Real-time GNSS precise positioning: RTKLIB for ROS, “International Journal of Advanced Robotic Systems”, Vol. 17, No. 3, 2020, DOI: 10.1177/1729881420904526.