The Fractional Order Models of a Thermal Trace on a Heat-Insulating Surface
Abstract
The paper deals with a modeling of thermal trace at heat insulating surface with the use of two Fractional Order (FO) state space models. The fundamental distributed-parameter model was compared to simplified, lumped-parameter model, built with the assumption that the spatial heat transfer can be omitted. Such a comparison has not been presented yet. The simplifying assumption was confirmed experimentally in two ways. Firstly, the proposed lumped-parameter model assures the same accuracy in the sense of Integral Absolute Error (IAE) cost function as distributed-parameter model. Next, identified values of the heat transfer coefficient in the heat transfer equation are close to zero.
Keywords
2D heat transfer, Caputo definition, fractional order system, initial problem, thermal camera, thermal trace
Modele ułamkowe rzędu śladu termicznego na powierzchni izolującej ciepło
Streszczenie
W pracy omówiono zagadnienie modelowania śladu termicznego na powierzchni izolującej ciepło z wykorzystaniem modeli ułamkowego rzędu w przestrzeni stanu. Podstawowy model o parametrach rozłożonych porównano z jego uproszczeniem o parametrach skupionych, zbudowanym przy założeniu, że przestrzenne rozchodzenie się ciepła w materiale płyty może być pominięte. Takie porównanie modelu o parametrach rozłożonych z modelem o parametrach skupionych nie było dotąd prezentowane. Założenie upraszczające zostało potwierdzone doświadczalnie dwiema niezależnymi drogami. Po pierwsze, dokładność (w sensie wskaźnika jakości IAE) modelu o parametrach skupionych jest praktycznie taka sama, jak modelu o parametrach rozłożonych. Po drugie, wartości współczynnika przewodnictwa cieplnego otrzymane w wyniku identyfikacji modelu są bliskie zera.
Słowa kluczowe
definicja Caputo, dwuwymiarowe przewodnictwo cieplne, kamera termowizyjna, problem początkowy, ślad termiczny, system rzędu ułamkowego
Bibliografia
- Al-Omari S.K., A fractional Fourier integral operator and its extension to classes of function spaces. “Advances in Difference Equations”, 2018, DOI: 10.1186/s13662-018-1644-5.
- Berger J., Gasparin S., Mazuroski W., Mendes N., An efficient two-dimensional heat transfer model for building envelopes. “Numerical Heat Transfer, Part A: Applications”, Vol. 79, No. 3, 2021, 163–194, 2021.
- Caponetto R., Dongola G., Fortuna L., Petras I., Fractional order systems: Modeling and Control Applications. [In:] Chua L.O., editor, “World Scientific Series on Nonlinear Science”, Vol. 72, 2010.
- Das S., Functional Fractional Calculus for System Identification and Controls. Springer, Berlin, 2010.
- Długosz M., Skruch P., The application of fractional-order models for thermal process modelling inside buildings. “Journal of Building Physics”, Vol. 39, No. 5, 2015, DOI: 10.1177/1744259115591251.
- Dzieliński A., Sierociuk D., Sarwas G., Some applications of fractional order calculus. “Bulletin of the Polish Academy of Sciences, Technical Sciences”, Vol. 58, No. 4, 2010, 583–592, DOI: 10.2478/v10175-010-0059-6.
- Gal C.G., Warma M., Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. “Evolution Equations and Control Theory”, Vol. 5, No. 1, 2016, 61–103, DOI: 10.3934/eect.2016.5.61.
- Gómez J.F., Torres L., Escobar R.F. (Eds). Fractional derivatives with Mittag-Leffler kernel. Trends and applications in science and engineering. Studies in Systems, Decision and Control, Vol. 194, 2019, Springer, DOI: 10.1007/978-3-030-11662-0.
- Kaczorek T., Selected Problems of Fractional Systems Theory. Springer, Berlin, 2011, DOI: 10.1007/978-3-642-20502-6.
- Kaczorek T., Singular fractional linear systems and electrical circuits. “International Journal of Applied Mathematics and Computer Science”, Vol. 21, No. 2, 2011, 379–384, DOI: 10.2478/v10006-011-0028-8.
- Kaczorek T., Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems. “International Journal of Applied Mathematics and Computer Science”, Vol. 26, No. 2, 2016, 277–283, DOI: 10.1515/amcs-2016-0019.
- Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits. “Studies in Systems, Decision and Control” (SSDC), Vol. 13, 2014, DOI: 10.1007/978-3-319-11361-6.
- Khan H., Shah R., Kumam P., Arif M., Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method. “Entropy”, Vol. 21, No. 6, 2019, 597–618, DOI: 10.3390/e21060597.
- Lu D., Suleman M., Ramzan M., Ul Rahman J., Numerical solutions of coupled nonlinear fractional KdV equations using he’s fractional calculus. “International Journal of Modern Physics B”, Vol. 35, No. 2, 2021, DOI: 10.1142/S0217979221500235.
- Moitsheki R.J., Rowjee A., Steady heat transfer through a two-dimensional rectangular straight fin. “Mathematical Problems in Engineering”, 2011, DOI: 10.1155/2011/826819.
- Mozyrska D., Pawłuszewicz E., Fractional discrete-time linear control systems with initialisation. “International Journal of Control”, Vol. 85, No. 2, 2011, 213–219, DOI: 10.1080/00207179.2011.643413.
- Olsen-Kettle L., Numerical solution of partial differential equations. The University of Queensland, Queensland, Australia, 2011.
- Oprzędkiewicz K., Stanisławski R., Gawin E., Mitkowski W., A new algorithm for a CFE-approximated solution of a discrete-time noninteger-order state equation. “Bulletin of the Polish Academy of Sciences. Technical Sciences”, Vol. 65, No. 4, 2017, 429–437, DOI: 10.1515/bpasts-2017-0048.
- Oprzędkiewicz K., Gawin E., The practical stability of the discrete, fractional order, state space model of the heat transfer process. “Archives of Control Sciences”, Vol. 28, No. 3, 2018, 463–482, DOI: 10.24425/acs.2018.124712.
- Oprzędkiewicz K., Gawin E., Mitkowski W., Modeling heat distribution with the use of a non-integer order, state space model. “International Journal of Applied Mathematics and Computer Science”, Vol. 26, No. 4, 2016, 749–756, DOI: 10.1515/amcs-2016-0052.
- Oprzędkiewicz K., Gawin E., Mitkowski W., Parameter identification for non integer order, state space models of heat plant. [In:] MMAR 2016: 21th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 2016, 184–188, DOI: 10.1109/MMAR.2016.7575130.
- Oprzędkiewicz K., Mitkowski W., A memory-efficient noninteger-order discrete-time state-space model of a heat transfer process. “International Journal of Applied Mathematics and Computer Science”, Vol. 28. No. 4, 2018, 649–659, DOI: 10.2478/amcs-2018-0050.
- Oprzędkiewicz K., Mitkowski W., Gawin E., An accuracy estimation for a non integer order, discrete, state space model of heat transfer process. [In:] Automation 2017: innovations in automation, robotics and measurment techniques: Warsaw, Poland, 2017, 86–98, DOI: 10.1007/978-3-319-54042-9_8.
- Oprzędkiewicz K., Mitkowski W., Gawin E., Dziedzic K., The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. “Bulletin of the Polish Academy of Sciences. Technical Sciences”, Vol. 66, No. 42018, 501–507, DOI: 10.24425/124267.
- Oprzędkiewicz K., Mitkowski W., Rosół M., Fractional order model of the two dimensional heat transfer process. “Energies”, Vol. 14, No. 19, 2021, DOI: 10.3390/en14196371.
- Oprzędkiewicz K., Mitkowski W., Rosół M., Fractional order state space model of the temperature field in the PCB plate. “Acta Mechanica et Automatica”, Vol. 17, No. 2, 2023, 180–187, DOI: 10.2478/ama-2023-0020.
- Oprzędkiewicz K., Rosół M., Mitkowski W., Modeling of thermal traces using fractional order, a discrete, memory-efficient model. “Energies”, Vol. 15, No. 6, 2022, 1–13, DOI: 10.3390/en15062257.
- Ostalczyk P., Discrete Fractional Calculus. Applications in Control and Image Processing. World Scientific, New Jersey, London, Singapore, 2016, DOI: 10.1142/9833.
- Podlubny I., Fractional Differential Equations. Academic Press, San Diego, 1999.
- Popescu E., On the fractional Cauchy problem associated with a Feller semigroup. “Mathematical Reports”, Vol. 12, No. 2, 2010, 181–188.
- Ryms M., Tesch K., Lewandowski W., The use of thermal imaging camera to estimate velocity profiles based on temperature distribution in a free convection boundary layer. “International Journal of Heat and Mass Transfer”, Vol. 165, Part A, 2021, DOI: 10.1016/j.ijheatmasstransfer.2020.120686.
- Sierociuk D., Skovranek T., Macias M., Podlubny I., Petras I., Dzieliński A., Ziubiński P., Diffusion process modeling by using fractional-order models. “Applied Mathematics and Computation”, Vol. 257, 2015, 2–11, DOI: 10.1016/j.amc.2014.11.028.
- Suleman M., Lu D., He J.H., Farooq U., Hui Y.S., Ul Rahman J., Numerical investigation of fractional HIV model using Elzaki projected differential transform method. “Fractals”, Vol. 26, No. 5, 2018, DOI: 10.1142/S0218348X18500627.
- Suleman M., Lu D., Ul Rahman J., Anjum N., Analytical solution of linear fractionally damped oscillator by Elzaki transformed method. “DJ Journal of Engineering and Applied Mathematics”, Vol. 4, No. 2, 2018, 49–57, DOI: 10.18831/djmaths.org/2018021005.
- Yang L., Sun B., Sun X., Inversion of thermal conductivity in two-dimensional unsteady-state heat transfer system based on finite difference method and artificial bee colony. “Applied Sciences”, Vol. 9, No. 22, 2019, DOI: 10.3390/app9224824.