Study on the Influence of an UGV Suspension System on Camera Motion of the Teleoperation System

eng Artykuł w języku angielskim DOI: 10.14313/PAR_252/53

Arkadiusz Rubiec , wyślij Mirosław Przybysz , Marian Janusz Łopatka , Łukasz Rykała , Piotr Krogul , Karol Cieślik , Rafał Typiak Military University of Technology, Faculty of Mechanical Engineering, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw

Pobierz Artykuł

Abstract

In the following article, the results of a study on the impact of the suspension system used in Unmanned Ground Vehicles (UGVs) on the kinematic excitation of cameras in teleoperation systems are presented. As indicated by preliminary reconnaissance studies, these excitations significantly affect the operator’s ability to perceive the environment and recognize images while driving. Currently, there is a lack of publications and guidelines in the literature regarding the design of UGV suspensions and their evaluation in terms of improving operator perception in teleoperation systems. The studies were conducted in a simulated environment using multibody systems, where various suspension structure variants were developed. The tests were carried out on the ISO 5008 rough test track. The evaluation of the tested suspension structures was carried out using a proprietary method, enabling parametric analysis and the selection of favorable solutions for improving image recognition by the UGV operator. Future research can focus on adjustment of the UGV suspension characteristics which could have significant influence on situational awareness and the operator’s ability to act effectively, especially during dynamic missions.

Keywords

multibody model, situational awareness, suspension system, teleoperation system, UGV

Badanie wpływu układu zawieszenia bezzałogowej platformy lądowej na ruch kamery układu teleoperacji

Streszczenie

W artykule przedstawiono wyniki badań wpływu zastosowanego w bezzałogowej platformie lądowej (BPL) układu zawieszenia na wymuszenia kinematyczne kamer w systemie teleoperacji. Jak wynika z opisanych wstępnych badań rozpoznawczych, te wymuszenia istotnie wpływają na zdolność percepcji operatora oraz jego umiejętność rozpoznawania obrazu podczas jazdy. Obecnie w literaturze brakuje publikacji i wytycznych w zakresie projektowania zawieszeń w BPL oraz ich oceny pod kątem poprawy percepcji operatorów w systemie teleoperacji. Przeprowadzone badania dowodzą, że odpowiednie dostosowanie charakterystyki zawieszenia BPL może znacznie poprawić świadomość sytuacyjną i umiejętność działania operatorów. Badania zostały przeprowadzone w sposób symulacyjny w środowisku przeznaczonym do modelowania układów wieloczłonowych, gdzie opracowano różne warianty struktur zawieszenia. Jako wymuszenie zastosowano model toru testowego ISO 5008 standard. Ocenę badanych struktur zawieszenia przeprowadzono za pomocą autorskiej metody, która pozwoliła na parametryczną analizę i wybór najlepszych rozwiązań pod kątem poprawy rozpoznawania obrazu przez operatora BPL.

Słowa kluczowe

BPL, model wieloczłonowy, świadomość sytuacyjna, system teleoperacji, układ zawieszenia

Bibliografia

  1. Almayyahi A., Wang W., Hussein A.A., Birch P., Motion control design for unmanned ground vehicle in dynamic environment using intelligent controller, “International Journal of Intelligent Computing and Cybernetics”, Vol. 10, No. 4, 2017, 530–548, DOI: 10.1108/IJICC-11- 2016-0044.
  2. Althani T., Salim R., Anzil M.M., Subramaniam P., Almaeeni K., Shukla A., Design and Implementation of a Locomotion Suspension System for a Desert Terrain UGV, “2023 9th International Conference on Automation, Robotics and Applications (ICARA)”, Abu Dhabi, United Arab Emirates, 2023, 259–262, DOI: 10.1109/ICARA56516.2023.10125898.
  3. Bartnicki A., Muszyński T., Rubiec A., Hydropneumatic Suspension Efficiency in Terms of Teleoperated UGV Research, “Solid State Phenomena”, Vol. 237, 2015, 195–200, DOI: 10.4028/www.scientific.net/SSP.237.195.
  4. Berns K., Nezhadfard A., Tosa M., Balta H., De Cubber G., Unmanned Ground Robots for Rescue Tasks. Search and Rescue Robotics – From Theory to Practice, “InTech”, 2017, DOI: 10.5772/intechopen.69491.
  5. Chen G., Jiang Y., Tang Y., Xu X., Revised adaptive active disturbance rejection sliding mode control strategy for vertical stability of active hydro-pneumatic suspension, “ISA Transactions”, Vol. 132, 2023, 490–507, DOI: 10.1016/j.isatra.2022.06.008.
  6. Chen S., Wang D., Zuo A., Chen Z., Li W., Zan J., Vehicle Ride Comfort Analysis and Optimization Using Design of Experiment, “Second International Conference on Intelligent Human-Machine Systems and Cybernetics”, Nanjing, China, 2010, 14–18, DOI: 10.1109/IHMSC.2010.11.
  7. Chen Z., Path Planning and optimization of Unmanned Ground Vehicles (UGVs) in the Field, “3rd International Conference on Unmanned Systems (ICUS)”, Harbin, China, 2020, 708–713, DOI: 10.1109/ICUS50048.2020.9274968.
  8. Czapla T., Wrona J., Technology development of military applications of unmanned ground vehicles, “Vision Based Systems for UAV Applications”, Springer: Heidelberg, Germany, 2013, 293–309, DOI: 10.1007/978-3-319-00369-6_19.
  9. Dąbrowska A., Jaskółowski M.B., Rubiec A., Cameras vibrations influence on efficiency of teleoperated Unmanned Ground Vehicle, “2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR)”, Międzyzdroje, Poland, 2016, 772–777, DOI: 10.1109/MMAR.2016.7575234.
  10. Dinelli C., Racette J., Escarcega M., Lotero S., Gordon J., Montoya J., Dunaway C., Androulakis V., Khaniani H., Shao S., Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review, “Drones”, Vol. 7, No. 2, 2023, DOI: 10.3390/drones7020136.
  11. Fabris E.J., Sangalli V.A., Soares L.P., Pinho M.S., Immersive telepresence on the operation of unmanned vehicles, “International Journal of Advanced Robotic Systems”, Vol. 18, No. 1, 2021, DOI: 10.1177/1729881420978544.
  12. Febriyanto R., Setiawardhana S., Tamara M.N., Sena Bayu B. Dewantara, Sigit R., Sanusi M.A., Design and Realization of UGV Robot with Combined of Geared Wheel and Walked Mechanism for Uncertain Terrain in Volcanic Observation, “International Electronics Symposium (IES)”, Surabaya, Indonesia, 2022, 317–323, DOI: 10.1109/IES55876.2022.9888626.
  13. Gadekar A., Fulsundar S., Deshmukh P., Aher J., Kataria K., Patel V., Barve S., Rakshak, A modular unmanned ground vehicle for surveillance and logistics operations, “Cognitive Robotics”, Vol. 3, 2023, 23–33, DOI: 10.1016/j.cogr.2023.02.001.
  14. Ha C., Lee D., Vision-based teleoperation of unmanned aerial and ground vehicles, “IEEE International Conference on Robotics and Automation”, Karlsruhe, Germany, 2013, 1465–1470, DOI: 10.1109/ICRA.2013.6630764.
  15. Hamid A.A., Nazih A., Ashraf M., Abdulbaky A., Khamis A., UGV locomotion system for rough terrain, “2016 International Workshop on Recent Advances in Robotics and Sensor Technology for Humanitarian Demining and Counter-IEDs (RST)”, Cairo, Egypt, 2016, DOI: 10.1109/RST.2016.7869858.
  16. Hapian-Smith J., An introduction to modern vehicle design, Butterworth-Heinemann, Oxford, 2002.
  17. Ibicek T., Thite A.N., Quantification of Human Discomfort in a Vehicle Using a Four-Post Rig Excitation, “Journal of Low Frequency Noise, Vibration and Active Control”, Vol. 31, No. 1, 2012, 29–42, DOI: 10.1260/0263-0923.31.1.29.
  18. ISO 2631, Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration, 1997.
  19. Kim J., Lee J., A Testbed for Predicting Maneuverability of UGV on Rough Terrain, “IFAC Proceedings Volumes”, Vol. 46, No. 10, 2013, 132–137, DOI: 10.3182/20130626-3-AU-2035.00044.
  20. Krogul P., Cieślik K., Łopatka M.J., Przybysz M., Rubiec A., Muszyński T., Rykała Ł., Typiak R., Experimental Research on the Influence of Size Ratio on the Effector Movement of the Manipulator with a Large Working Area, “Applied Sciences”, Vol. 13, No. 15, 2023, DOI: 10.3390/app13158908.
  21. Luettel T., Himmelsbach M., Wuensche H.J., Autonomous Ground Vehicles—Concepts and a Path to the Future, “Proceedings of the IEEE 2012”, Vol. 100, 2002, 1831–1839, DOI: 10.1109/JPROC.2012.2189803.
  22. Lukoševičius V., Makaras R., Rutka A., Keršys R., Dargužis A., Skvireckas R., Investigation of Vehicle Stability with Consideration of Suspension Performance, “Applied Sciences”, Vol. 11, No. 20, 2021, DOI: 10.3390/app11209778.
  23. Man C.K.Y.L.L., Koonjul Y., Nagowah L., A low cost autonomous unmanned ground vehicle, “Future Computing and Informatics Journal”, Vol. 3, No. 2, 2018, 304–320, DOI: 10.1016/j.fcij.2018.10.001.
  24. Mazal J., Stodola P., Podhorec M., UGV development with supervised autonomy, “Proceedings of the 16th International Conference on Mechatronics – Mechatronika 2014”, Brno, Czech Republic, 359–363, DOI: 10.1109/MECHATRONIKA.2014.7018284.
  25. McConville J., Introduction to Mechanical System Simulation Using Adams, SDC Publications, 2015.
  26. Mlati M.C., Wang Z., Unmanned ground vehicles: adaptive control system for real-time rollover prevention, “International Journal of Vehicle Autonomous Systems”, Vol. 16, No. 1, 2021, 81–95, DOI: 10.1504/IJVAS.2021.118047.
  27. Muktadir M., Yi S., Hamoush S., Garfo S., Dekkata S.C., Li X., Tereda A.A., McKee R., Brown K., Klawah N., Uncrewed Ground Vehicles (UGVs) and Nature-Inspired Designed Robot DIGIT and SPOT: A Review, “American Journal of Engineering and Applied Sciences”, Vol. 15, No. 4, 2022, 274–287, DOI: 10.3844/ajeassp.2022.274.287.
  28. Nie C., Hauschka G., Spenko M., Design and experimental characterization of an omnidirectional unmanned ground vehicle for outdoor terrain, “IEEE International Conference on Robotics and Automation”, Saint Paul, USA, 2012, DOI: 10.1109/ICRA.2012.6225155.
  29. Parczewski K., Wnęk H., The influence of the type of suspensions on vehicle stability and steerability, “Proceedings of 19th International Conference Transport Means.”, 2015.
  30. Parekh D., Poddar N., Rajpurkar A., Chahal M., Kumar N., Joshi G.P., Cho W., A Review on Autonomous Vehicles: Progress, Methods and Challenges, “Electronics”, Vol. 11, No. 14, 2022, DOI: 10.3390/electronics11142162.
  31. Rajesh R.J., Kavitha P., Camera gimbal stabilization using conventional PID controller and evolutionary algorithms, “International Conference on Computer, Communication and Control (IC4)”, Indore, India, 2015, DOI: 10.1109/IC4.2015.7375580.
  32. Rubiec A., Kształtowanie właściwości zawieszeń kołowych teleoperowanych Inżynieryjnych Robotów Wsparcia, PhD thesis, 2017 (In Polish).
  33. Rykała Ł., Rubiec A., Przybysz M., Krogul P., Cieślik K., Muszyński T., Rykała M., Research on the Positioning Performance of GNSS with a Low-Cost Choke Ring Antenna, “Applied Sciences“, Vol. 13, No. 2, 2023, DOI: 10.3390/app13021007.
  34. Someshwaran M., Jose D., Jefferson P.P., Autonomous unmanned ground vehicle for enhancement of defence strategies, “Inventive Communication and Computational Technologies: Proceedings of ICICCT 2019”, Springer Singapore, 873–880, DOI: 10.1007/978-981-15-0146-3_84.
  35. Theunissen J., Tota A., Gruber P., Dhaens M., Sorniotti A., Preview-based techniques for vehicle suspension control: a state-of-the-art review, “Annual Reviews in Control”, Vol. 51, 2021, 206–235, DOI: 10.1016/j.arcontrol.2021.03.010.
  36. Typiak A., Sterowanie mobilnymi maszynami inżynieryjnymi w układzie teleoperacji. Wojskowa Akademia Techniczna, 2013, 30–50, ISBN 978-83-62954-82-7 (In Polish).
  37. Verma M., Lafarga V., Baron M., Collette C., Active stabilization of unmanned aerial vehicle imaging platform. “Journal of Vibration and Control”, Vol. 26, No. 19-20, 2020, 1791–1803, DOI: 10.1177/1077546320905494.
  38. Wang Y., Liu J., Evaluation methods for the autonomy of unmanned systems, “Chinese Science Bulletin”, Vol. 57, 2012, 3409–3418, DOI: 10.1007/s11434-012-5183-2.
  39. Yu B., Wang Z., Wang G., Zhao J., Zhou L., Zhao J., Investigation of the suspension design and ride comfort of an electric mini off-road vehicle, “Advances in Mechanical Engineering”, Vol. 11, No. 1, 2019, DOI: 10.1177/1687814018823351.
  40. Zhang J., Hou J., Hu J., Zhao C., Xu Z., Cheng C., UGV autonomous driving system design for unstructed environment, “40th Chinese Control Conference (CCC)”, Shanghai, China, 2021, 4157–4162, DOI: 10.23919/CCC52363.2021.9549342.
  41. Zhang K., Yang Y., Fu M., Wang M., Traversability Assessment and Trajectory Planning of Unmanned Ground Vehicles with Suspension Systems on Rough Terrain, “Sensors”, Vol. 19, No. 20, 2019, DOI: 10.3390/s19204372.
  42. Zhang L., Ren C., Yuan X., Zhang W., Ride comfort control of in-wheel motor drive unmanned ground vehicles with energy regeneration, “Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering”, Vol. 235, No. 4, 2021, 1057–1069, DOI: 10.1177/0954407020933364.