Optymalizacja parametryczna regulatora niecałkowitego rzędu typu PD^alfa

pol Artykuł w języku polskim DOI: 10.14313/PAR_218/5

wyślij Marta Zagórowska AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica, al. Mickiewicza 30, 30-059 Kraków

Pobierz Artykuł

Streszczenie

W artykule przeanalizowano zachowanie układu całkowitego rzędu ze sprzężeniem zwrotnym niecałkowitego rzędu. Przedstawiono nową metodę doboru optymalnych parametrów dla regulatorów typu PDα we wspomnianych układach z nieskończonym horyzontem. Zaprezentowano wykorzystaną metodę aproksymacji układów niecałkowitego rzędu z wykorzystaniem funkcji Laguerre’a oraz sformułowano problem w postaci zagadnienia minmax. Pokazano również przykładowy przebieg optymalizacji ze względu na parametry związane z typem aproksymacji.

Słowa kluczowe

funkcje Laguerre’a, optymalizacja, PD^alfa, sprzężenie zwrotne, sterowanie niecałkowitego rzędu, układ niecałkowitego rzędu

Parametric optimization of non-integer order controller PD^alfa

Abstract

In this paper we analysed the behaviour of an integer order system with non-integer control function. We presented a new method for tuning the non-integer order controllers PDa for use in systems with infinite horizon. An approximation method for non-integer order systems was presented (using Laguerre functions) along with the definition of the issue in form of minmax problem. Finally some examples were analysed with respect to parameters specific for this approximation.

Keywords

feedback, Laguerre functions, non-integer order systems, optimization, PD^alfa controller

Bibliografia

  1. Podlubny I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, ser. Mathematics in Science and Engineering. Elsevier Science, 1998.
  2. Petráš I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, ser. Nonlinear Physical Science. Springer, 2011. DOI: 10.1007/978-3-642-18101-6.
  3. Diethelm K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, ser. Lecture Notes in Mathematics. Springer, 2010, [Online]. https://books.google.pl/books?id=K4vKvX98SM8C. DOI: 10.1007/978-3-642-14574-2.
  4. Kaczorek T., Selected Problems of Fractional Systems Theory, ser. Lecture Notes in Control and Information Sciences. Springer, 2011. DOI: 10.1007/978-3-642-20502-6.
  5. Bania P., Baranowski J., Laguerre polynomial approximation of fractional order linear systems, [in:] Advances in the Theory and Applications of Non-integer Order Systems: 5th Conference on Non-integer Order Calculus and Its Applications, Cracow, Poland, Mitkowski W., Kacprzyk J., Baranowski J., Eds. Springer, 171–182, 2013. DOI: 10.1007/978-3-319-00933-9_15.
  6. Piątek P., Baranowski J., Investigation of Fixed-Point Computation Influence on Numerical Solutions of Fractional Differential Equations, “Acta Mechanica et Automatica”, vol. 5, no. 2, 101–107, 2011.
  7. Bauer W., Baranowski J., Mitkowski W., Non-integer order PIαD m control ICU-MM, [in:] Advances in the Theory and Applications of Non-integer Order Systems: 5th Conference on Non-integer Order Calculus and Its Applications, Cracow, Poland, Mitkowski W., Kacprzyk J., Baranowski J., Eds. Springer, 295–303, 2013. DOI: 10.1007/978-3-319-00933-9_27.
  8. Dziwiński T., Bauer W., Baranowski J., Piątek P., Zagórowska M., Robust non-integer order controller for air heater, [in:] 19th International Conference On Methods and Models in Automation and Robotics (MMAR), IEEE, 434–438, 2014. DOI: 10.1109/MMAR.2014.6957393.
  9. Kawala-Janik A., Podpora M., Baranowski J., Bauer W., Pelc M., Innovative approach in analysis of EEG and EMG signals – Comparision of the two novel methods, [in:] 19th International Conference On Methods and Models in Automation and Robotics (MMAR), IEEE, 804–807, 2014. DOI: 10.1109/MMAR.2014.6957459.
  10. Bauer W., Dziwiński T., Baranowski J., Piątek P., Zagórowska M., Comparison of performance indices for tuning of PI λD m controller for magnetic levitation system, [in:] Advances in Modelling and Control of Non-integer-Order Systems – 6th Conference on Non-Integer Order Calculus and its Applications, Latawiec K.J., Łukaniszyn M., Stanisławski R., Eds. Springer, 2014. DOI: 10.1007/978-3-319-09900-2_12.
  11. Meng L., Xue D., Design of an optimal fractional-order PID controller using multi-objective GA optimization, [in:] Control and Decision Conference, CCDC’09. Chinese. IEEE, 3849–3853, 2009. DOI: 10.1109/CCDC.2009.5191796.
  12. Kesarkar A.A., Selvaganesan N., Design of fractional order robust controller for universal plant structure, [in:] Engineering (NUiCONE), 2011 Nirma University International Conference on. IEEE, 1–4, 2011. DOI: 10.1109/NUiConE.2011.6153305.
  13. Kesarkar A.A., Selvaganesan N., Novel tuning expressions for fractional order (PDβ and PIα) controllers using a generalized plant structure, “Journal of Control Engineering and Applied Informatics”, vol. 17, no. 1, 2015, 70–80.
  14. Kesarkar A.A., Selvaganesan N., Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm, “Systems Science & Control Engineering: An Open Access Journal”, vol. 3, no. 1, 2015, 99–105.
  15. Baranowski J., Zagórowska M., Bania P., Bauer W., Dziwiński T., Piątek P., Impulse response approximation method for bi-fractional filter, [in:] 19th International Conference On Methods and Models in Automation and Robotics (MMAR), IEEE, 2014, 379–383. DOI: 10.1109/MMAR.2014.6957383.
  16. Zagórowska M., Baranowski J., Bania P., Piątek P., Bauer W., Dziwiński T., Impulse response approximation method for ”fractional order lag”, [in:] Advances in Modelling and Control of Noninteger-order Systems – 6th Conference on Non-Integer Orfer Caculus and its Applications, Latawiec K.J., Łukaniszyn M., Stanisławski R., Eds. Springer, 2014. DOI: 10.1007/978-3-319-09900-2_11.
  17. Zagórowska M., Parametric optimization of non-integer order PDμ controller for delayed system, [in:] Theoretical Developments and Applications of Non-Integer Order Systems, ser. Lecture Notes in Electrical Engineering, Domek S., Dworak P., Eds. Springer International Publishing, vol. 357, 2016, 259–270.
  18. Matignon D., Stability results for fractional differential equations with applications to control processing, [in:] Computational engineering in systems applications, vol. 2. Lille France, 1996, 963–968.