Determining the Angle of Bearing on a Sound Source in Water Using Signals Spread Spectrum

eng Artykuł w języku angielskim DOI: 10.14313/PAR_254/39

wyślij Bogdan Żak Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69, 81-127 Gdynia

Pobierz Artykuł

Abstract

This paper presents a method and results of simulation and laboratory studies of the use of direct spread spectrum signals in underwater navigation. The method was evaluated depending on the parameters of signal acquisition, the effect of interference and the configuration of the receiving antenna.

Keywords

cross correlation, hydroacoustics, spread spectrum, underwater navigation

Wyznaczanie kąta namiaru na źródło dźwięku w wodzie z wykorzystaniem sygnału z widmem rozproszonym

Streszczenie

W artykule przedstawiono metodę oraz wyniki badań symulacyjnych i laboratoryjnych wykorzystania w nawigacji podwodnej sygnału z widmem rozproszonym bezpośrednio. Metoda została oceniona w zależności od parametrów akwizycji sygnału, wpływu zakłóceń i konfiguracji anteny odbiorczej.

Słowa kluczowe

hydroakustyka, korelacja wzajemna, nawigacja podwodna, widmo rozproszone

Bibliografia

  1. Christ R.D., Wernli R.L., The ROV Manual, Elsevier Ltd, 2007.
  2. Morgado M., Batista P., Oliveira P., Silvestr C., Position USBL/DVL Sensor-based Navigation Filter in the presence of Unknown Ocean Currents, The 49th IEEE Conference on Decision and Control, CDC 2010, December 15–17, 2010, Atlanta, Georgia, USA, DOI: 10.1109/CDC.2010.5717740.
  3. Hartman R., Hawkinson W., Sweeney K., Tactical underwater navigation system (TUNS), 2008 IEEE/ION Position, Location and Navigation Symposium, 05–08 May 2008, Monterey, CA, USA, 898–911, DOI: 10.1109/PLANS.2008.4570032.
  4. Zeng Q., Zhang M., Liu H., Sui X., Liang S., Song Z, Research of underwater navigation on a ROV with structure detection and decontamination, The 27th Chinese Control and Decision Conference (2015 CCDC), 2015, 2585–2589, DOI: 10.1109/CCDC.2015.7162358.
  5. Xing H., Liu Y., Guo S., Shi L., Hou X., Liu W., Zhao Y., A Multi-Sensor Fusion Self-Localization System of a Miniature Underwater Robot in Structured and GPS-Denied Environments, “IEEE Sensors Journal”, Vol. 21, No. 23, 2021, 27136–27146, DOI: 10.1109/JSEN.2021.3120663.
  6. Ma X., Zhang T., Liu X., Application of Adaptive Federated Filter Based on Innovation Covariance in Underwater Integrated Navigation System, IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2018, 209–213, DOI: 10.1109/3M-NANO.2018.8552184.
  7. Gucma M., Montewka J., Podstawy morskiej nawigacji inercyjnej, Akademia Morska w Szczecinie, Szczecin 2006.
  8. Milne P.H., Underwater Acoustic Positioning System, Gulf Publishing Company, 1983; ISBN 9780872010123.
  9. Foley B.P., Mindell D.A., Precision Survey and Archaeological Methodology in Deep Water, “ENALIA The Journal of the Hellenic Institute of Marine Archaeology”, Vol. VI, 2002, 49–56.
  10. Bechaz C., Thomas H., The Underwater use of GPS GIB Portable Tracking Systems, https://hydro-international.com/content/article/gib-portable-tracking-systems, 2008.
  11. Kayser J.R., Cardoza M.A., Wade W.F., Merts J.H., Casey D.R., Weapon Scoring Results from a GPS Acoustic Weapons Test and Training System, National Technical Meeting of The Institute of Navigation, San Diego, 2005, 416–430.
  12. Cardoza M.A., Kayser J.R., Wade W.F., Bennett R.L., Merts J.H., Casey D.R., Offshore Weapon Scoring Using Rapidly Deployed Realtime Acoustic Sensors (PDF), 21st Annual National Test & Evaluation Conference. Charlotte, North Carolina, 2005.
  13. Jonathan P.D., Flexible Acoustic Positioning System Architecture, Marine Technology Society, Dynamic Positioning Conference, 2002.
  14. Chen T., Chan J., Gollakota S., Underwater 3D positioning on smart devices, Proceedings of the ACM SIGCOMM 2023 Conference, 33–48, DOI: 10.1145/3603269.3604851.
  15. Alrajeh N.A., Bashir M., Shams B., Localization Techniques in Wireless Sensor Networks, “International Journal of Distributed Sensor Networks”, 2022, DOI: 10.1155/2013/304628.
  16. Ostrowski Z., Marszal J., Salamon R., Underwater Navigation System Based on Doppler Shifts of a Continuous Wave, 2018 Joint Conference – Acoustics, 2018. DOI: 10.1109/ACOUSTICS.2018.8502410.
  17. Ostrowski Z., Salamon R., Kochańska I., Marszal J., Underwater navigation system based on Doppler shift – measurements and error estimations, “Polish Maritime Research”, Vol. 27, No. 1, 2020, 180–187, DOI: 10.2478/pomr-2020-0019.
  18. Diamant R., Lampe L., Underwater localization with time-synchronization and propagation speed uncertainties, 8th Workshop on Positioning, Navigation and Communication, 2011, 100–105, 2011. DOI: 10.1109/WPNC.2011.5961023.
  19. Studański R., Żak A., Results of impulse response measurements in real conditions, “Journal of Marine Engineering and Technology”, Vol. 16, No. 4, 2017, 337–343, DOI: 10.1080/20464177.2017.1378151