Simulation of the Operation of a Single Pixel Camera with Compressive Sensing in the Long-Wave Infrared

eng Artykuł w języku angielskim DOI: 10.14313/PAR_240/53

wyślij Anna Szajewska The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland

Pobierz Artykuł

Abstract

Imaging with the use of a single pixel camera and based on compressed sensing (CS) is a new and promising technology. The use of CS allows reconstruction of images in various spectrum ranges depending on the spectrum sensibility of the used detector. During the study image reconstruction was performed in the LWIR range based on a thermogram from a simulated single pixel camera. For needs of reconstruction CS was used. A case analysis showed that the CS method may be used for construction of infrared-based observation single pixel cameras. This solution may also be applied in measuring cameras. Yet the execution of a measurement of radiation temperature requires calibration of results obtained by CS reconstruction. In the study a calibration method of the infrared observation camera was proposed and studies were carried out of the impact exerted by the number of measurements made on the quality of reconstruction. Reconstructed thermograms were compared with reference images of infrared radiation. It has been ascertained that the reduction of the reconstruction error is not directly in proportion to the number of collected samples being collected. Based on a review of individual cases it has been ascertained that apart from the number of collected samples, an important factor that affects the reconstruction fidelity is the structure of the image as such. It has been proven that estimation of the error for reconstructed thermograms may not be based solely on the quantity of executed measurements.

Keywords

compressed sensing, infrared measurements, single pixel camera, thermal camera

Symulacja działania kamery jedno-pikselowej z oszczędnym próbkowaniem w paśmie dalekiej podczerwieni

Streszczenie

Obrazowanie kamerą jednopikselową z użyciem CS (compressed sensing) jest nową i obiecującą technologią. Za pomocą CS można rekonstruować obrazy w różnych zakresach widmowych zależnie od czułości spektralnej użytego detektora. W pracy wykonano rekonstrukcję obrazu w zakresie LWIR (Long-Wave Infrared) na podstawie termogramu z zasymulowanej kamery jednopikselowej. Do rekonstrukcji użyto CS. Na podstawie analizy przypadków stwierdzono, że metodę CS można wykorzystać do budowania kamer obserwacyjnych jednopikselowych na podczerwień. Możliwe jest również zastosowanie tego rozwiązania w kamerach pomiarowych. Aby wykonać pomiar temperatury radiacyjnej należy dokonać kalibracji wyników uzyskanych na drodze rekonstrukcji CS. W badaniu zaproponowano sposób kalibracji kamery pomiarowej na podczerwień oraz zbadano wpływ liczby pomiarów na jakość rekonstrukcji. Zrekonstruowane termogramy porównano z referencyjnymi obrazami promieniowania podczerwonego. Stwierdzono, że redukcja błędu rekonstrukcji nie jest wprost proporcjonalna do zwiększanej liczby pobieranych próbek. Na podstawie analizy przypadków zaobserwowano, że poza liczbą pobieranych próbek, istotnym czynnikiem mającym wpływającym na wierność rekonstrukcji jest struktura samego obrazu. Dowiedziono, że szacowanie błędu dla zrekonstruowanych termogramów nie może być oparte tylko na liczbie wykonywanych pomiarów.

Słowa kluczowe

kamera jedno-pikselowa, kamera termowizyjna, oszczędne próbkowanie, pomiary w podczerwieni

Bibliografia

  1. Więcek B., De Mey G., Termowizja w podczerwieni podstawy i zastosowania. Wydawnictwo PAK, Warszawa 2011, ISBN 978-83-926319-7-2, 29–32, 103–130.
  2. Chan W.L., Takhar D., Charan K., Kelly K.F., Baraniuk R.G., Mittelman D., Single-pixel terahertz camera speeds measurement, “Laser Focus World”, No. 9, 2008, 73–75.
  3. Edgar M.P., Gibson G.M., Bowman R.W., Sun B., Radwell N., Mitchel K.J., Welsh S.S., Padgett M.J., Simultaneous real-time visible and infrared video with single-pixel detectors. “Scientific Reports”, 2015, 5, DOI: 10.1038/srep10669.
  4. McLean D.F., Restoring Baird’s Image (IEE History of Technology). IEE London 2000, ISBN 10:0852967950, 26–28.
  5. Candes E., Romberg J., Tao T., Stable Signal Recovery from Incomplete and Inaccurate Measurements. “Communications on Pure and Applied Mathematics”, Vol. 59, No. 8, 2006, 1207–1223, DOI: 10.1002/cpa.20124.
  6. Duarte M.F., Davenport M.A., Takhar D., Laska J.N., Sun T., Kelly K.F., Baraniuk R.G., Single-Pixel Imaging via Compressive Sampling. “IEEE Signal Processing Magazine”, Vol. 25, No. 2, 2008, 83–91, DOI: 10.1109/MSP.2007.914730.
  7. Wakin M.B., Laska J.N., Duarte M.F, Baron D., Sarvo tham S., Takhar D., Kelly K.F., Baraniuk R.G., An Architecture for Compressive Imaging. International Conference on Image Processing, Atlanta, GA, USA, 8-11 Oct. 2006, DOI: 10.1109/ICIP.2006.312577.
  8. Jones-Bey H.A., Compressive sensing enables single-pixel digital camera, “Laser Focus World” Vol. 42, No. 11, 2006, 17–19.
  9. Baraniuk R.G, Kelly K.F., Krishna S., Bridge R.F., Compressive sensing architecture advances infrared camera design. “Laser Focus World”, No. 6, 2011, 31–34.
  10. Heidari A., Saeedkia D., A 2D Camera Design with a Single-pixel Detector, 34th International Conference on Infrared, Millimeter, and Terahertz Waves. Busan, South Korea 21-25 Sept. 2009, DOI: 10.1109/ICIMW.2009.5324725.
  11. Liu Hong-Chao, Zhang, S., Computational ghost imaging of hot objects in long-wave infrared range, Applied Physics Letters, Vol. 111, No. 3, 2017, DOI: 10.1063/1.4994662.
  12. Kruse P.W., Skatrud D.D., Uncooled Infrared Imaging Arrays and Systems. Academic Press, San Diego 1997, eBook ISBN:9780080864440.
  13. Kutyniok G., Theory and applications of compressed sensing, GAMM Mitteilungen, Vol. 36, No. 1, 2013, 79–101, DOI: 10.1002/gamm.201310005.
  14. Takhar D., Laska J.N., Wakin M.B., Duarte M.F., Baron D., Sarvotham S., Kelly K.F., Baraniuk R.G., A New Compressive Imaging Camera Architecture using Optical-Domain Compression, Proceedings of SPIE – The International Society for Optical Engineering, 6065, 16–18 Jan. 2006, DOI: 10.1117/12.659602.
  15. Heng Bi, Xiao Zeng, Xin Tang, Shujia Qin, King Wai Chiu Lai, Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras, “Sensors”, Vol. 16, No. 3, 2016, DOI: 10.3390/s16030318.
  16. Cevher V., Indyk P., Carin L., Baraniuk R.G., Sparse Signal Recovery and Acquisition with Graphical Models, “Signal Processing Magazine”, Vol. 27, No. 6, 2010, 92–103, DOI: 10.1109/MSP.2010.938029.
  17. Akshat D., Vadathya A.K., Mitra K., Compressive Image Recovery Using Recurrent Generative Model. IEEE International Conference on Image Processing (ICIP), Beijing, China, 17-20 Sept. 2017, DOI: 10.1109/ICIP.2017.8296572.
  18. Mardani M., Gong E., Cheng J.Y., Pauly J., Xing L., Recurrent Generative Adversarial Neural Networks for Compressive Imaging. IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, Netherlands Antilles, 10-13 December 2017, DOI: 10.1109/CAMSAP.2017.8313209.
  19. Bahmani S., Romberg J., Compressive Deconvolution in Random Mask Imaging. “IEEE Transactions on Computational Imaging”, Vol. 1, No. 4, 2015, 236–246, DOI: 10.1109/TCI.2015.2485941.
  20. Arias-Castro E., Cande, E.J., Davenport M.A., On the fundamental limits of adaptive sensing, “IEEE Transactions on Information Theory”, Vol. 59, No. 1, 2012, 472–481, DOI: 10.1109/TIT.2012.2215837.
  21. Huang G., Jiang H., Matthews K., Wilford P., Lensless Imaging By Compressive Sensing. IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 Sept. 2013, DOI: 10.1109/ICIP.2013.6738433.
  22. Gibson M.G., Sun B., Edgar M.P., Phillips D.B., Hempler N., Maker G.T., Malcolm G.P.A., Padgett M.J., Real-Time Imaging of Methane Gas Leaks Using a Single-Pixel Camera. Optics Express, Vol. 25, No. 4, 2017, 2998–3005, DOI: 10.1364/OE.25.002998.
  23. Lee B., Introduction to ±12 Degree Orthogonal Digital Micromirror Devices (DMDs), Texas Instruments, 2018.
  24. Don M.L., Fu C., Arce G.R., Compressive imaging via a rotating coded aperture, “Applied Optics”, Vol. 56, No. 3, 2017, 142-153, DOI: 10.1364/AO.56.00B142.
  25. Candes E., Romberg J., l1-MAGIC: Recovery of Sparse Signals via Convex Programming Caltech October 2005, https://statweb.stanford.edu/~candes/software/l1magic/downloads/l1magic.pdf.
  26. Candès E.J, Wakin M.B., An Introduction to Compressive Sampling. “IEEE Signal Processing Magazine”, 2008, 25, 21–30, DOI: 10.1109/MSP.2007.914731