Rozpoznawanie ruchu palców na podstawie analizy elektromiogramu
Streszczenie
W artykule przedstawiono informacje dotyczące systemu umożliwiającego rozpoznawanie ruchu palców na podstawie dwóch sygnałów elektromiograficznych (EMG). W chwili obecnej system pozwala rozróżnić czy wykonany był ruch palcem wskazującym, środkowym, serdecznym lub małym. W dalszej części artykułu prezentowane są wyniki działania systemu oraz możliwe kierunki rozwoju.
Słowa kluczowe
elektromiografia, filtr IIR, rozpoznawanie wzorców
Recognition of Finger Movement Based on Electromyogram Analysis
Abstract
This paper discusses the system that allows to recognition of fingers movement based on a electromyogram (EMG). At the moment it can distinguish between the movement of pinky finger, ring finger, middle finger and index finger. The article presents the results of research on the effectiveness of the system as well as further development possibilities.
Keywords
electromyography, IIR filter, pattern recognition
Bibliografia
- Akhmadeev K., Rampone E., Yu T., Aoustin Y., Le Carpentier E., A testing system for a real-time gesture classification using surface EMG, “IFAC-PapersOnLine”, Vol. 50, Issue 1, July 2017, 11498–11503, DOI: 10.1016/j.ifacol.2017.08.1602.
- Shi W., Lyu Z., Tang S., Chia T., Yang C., A bionic hand controlled by hand gesture recognition based on surface EMG signals: A preliminary study, “Biocybernetics and Biomedical Engineering”, Vol. 38, Issue 1, 2018, 126–135, DOI: 10.1016/j.bbe.2017.11.001.
- Lopes J., Simão M., Mendes N., Safeea M., Neto P., Hand/arm gesture segmentation by motion using IMU and EMG sensing, “Procedia Manufacturing”, Vol. 11, 2017, 107–113, DOI: 10.1016/j.promfg.2017.07.158.
- Svecova L., Vala D., Using Electromyography for Improving of Training of Sport Shooting, “IFAC-PapersOnLine”, Vol. 49, Issue 25, 2016, 541–545, DOI: 10.1016/j.ifacol.2016.12.091.
- Verikas A., Parker J., Bacauskiene M., Olsson M.C., Exploring relations between EMG and biomechanical data recorded during a golf swing, “Expert Systems with Applications”, Vol. 88, 1 December 2017, 109–117, DOI: 10.1016/j.eswa.2017.06.041.
- Barth B., Mayer K., Strehl U., Andreas J. Fallgatter A.J., Ehlis A., EMG biofeedback training in adult attention-deficit/hyperactivity disorder: An active (control) training?, “Behavioural Brain Research”, Vol. 329, 30 June 2017, 58–66, DOI: 10.1016/j.bbr.2017.04.021.
- Ganesan Y., Gobee S., Durairajah V., Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor, “Procedia Computer Science”, Vol. 76, 2015, 53–59, DOI: 10.1016/j.procs.2015.12.275.
- Kamavuako E.N., Scheme E.J., Englehart K.B., Combined surface and intramuscular EMG for improved realtime myoelectric control performance, “Biomedical Signal Processing and Control”, Vol. 10, March 2014, 102–107, DOI: 10.1016/j.bspc.2014.01.007.
- Tavakoli M., Benussi C., Lourenco J.L., Single channel surface EMG control of advanced prosthetic hands: A simpleh, low cost and effcient a pproach , “Expert Systems with Applications”, Vol. 79, 15 August 2017, 322–332, DOI: 10.1016/j.eswa.2017.03.012.
- Khushaba R.N., Al-Timemy A., Kodagoda S., Nazarpour K., Combined influence of forearm orientation and muscular contraction on EMG pattern recognition, “Expert Systems with Applications”, Vol. 61, 1 November 2016, 154–161, DOI: 10.1016/j.eswa.2016.05.031.
- Abrahams P., Atlas anatomiczny, Świat Książki, 2014.
- Bober T., Zawadzki J., Biomechanika układu ruchu człowieka, Wydawnictwo BK, 2003.
- Błaszczyk J. W., Biomechanika kliniczna, Wydawnictwo Lekarskie PZWL, 2004.
- MyoWare Muscle Sensor (AT-04-001) Datasheet, Advancer Technologies, 2015–2016.
- www.mathworks.com/help/dsp/ref/biquadfilter.html, dostęp 03.05.2018.
- eceweb1.rutgers.edu/~orfanidi/ece521/notes.pdf, dostęp 03.05.2018.
- Walczak J., Lewandowski M., Porównawcza metoda oceny zniekształceń procesu filtracji cyfrowej sygnałów niestacjonarnych, XXVIII IC SPETO, Ustroń, Maj 2005, Vol. II, 375–378.