Stability Controller on the Atlas Robot Example

eng Artykuł w języku angielskim DOI: 10.14313/PAR_224/65

wyślij Mikołaj Wasielica Politechnika Poznańska, Instytut Automatyki i Inżynierii Informatycznej

Pobierz Artykuł

Abstract

The paper presents the gait framework for a biped robot on the Atlas robot example. The method utilizes inverted pendulum model and static stability controller with correction from IMU sensor. A straight-forward balance control strategy based on ankle joints control is proposed. The controller which stabilizes the robot during execution of the planned path is described. To show the efficiency of the proposed method the results obtained in the Virtual Robotics Challenge environment (Gazebo) are provided.

Keywords

biped robot, humanoid robot, legged robot, motion planning

Kontroler równowagi na przykładzie robota Atlas

Streszczenie

Artykuł przedstawia system generowania chodu dla robotów dwunożnych na przykładzie robota Atlas. Metoda wykorzystuje model odwróconego wahadła oraz statyczny kontroler stabilności wraz z korekcją z sensora IMU. Zaproponowano prostą metodę utrzymywania równowagi w oparciu o sterowanie ruchami stóp robota. Opisano też kontroler stabilizujący robota podczas pokonywania zaplanowanej ścieżki. Zweryfikowano działanie zaproponowanych metod na robocie Atlas w symulatorze Virtual Robotics Challenge (Gazebo).

Słowa kluczowe

planowanie ruchu, robot dwunożny, robot humanoidalny, robot kroczący

Bibliografia

  1. Abdallah M., Goswami A., A Biomechanically Motivated Two-Phase Strategy for Biped Upright Balance Control, [in:] Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 1996–2001, DOI: 10.1109/ROBOT.2005.1570406.
  2. Atmeh G.M., Ranatunga I., Popa D.O., Subbarao K., Lewis F., Rowe P., Implementation of an Adaptive, Model Free, Learning Controller on the Atlas Robot, [in:] Proceedings of the 2014 American Control Conference (ACC), Portland, USA, 2014, 2887–2892, DOI: 10.1109/ACC.2014.6859431.
  3. Azevedo M.C., Poignet P., Espiau B., Artificial Locomotion Control: From Human to Robots, “Robotics and Autonomous Systems”, Vol. 47, Iss. 4, 2004, 203–223, DOI: 10.1016/j.robot.2004.03.013.
  4. Fujiwara K., Kanehiro F., Kajita S., Hirukawa H., UKEMI: Falling Motion Control to Minimize Damage to Biped Humanoid Robot, [in:] Proceedings of the 2002 IEEE International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Oct. 2002, 2521–2526, DOI: 10.1109/IRDS.2002.1041648.
  5. Guihard M., Gorce P., Dynamic Control of Bipeds Using Ankle and Hip Strategies, [in:] Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, 2587–2592, DOI: 10.1109/IRDS.2002.1041660.
  6. Gutmann J.S., Fukuchi M., Fujita M., Stair Climbing for Humanoid Robots Using Stereo Vision”, [in:] Proceedings of the 2004 IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, 1407–1413, DOI: 10.1109/IROS.2004.1389593.
  7. Hofmann A., Robust Execution of Bipedal Walking Tasks from Biomechanical Principles, Ph.D. dissertation, Massachusetts Institute of Technology, January 2006.
  8. http://carnegierobotics.com/multisense-sl/
  9. http://spectrum.ieee.org/automaton/robotics/humanoids/darpaunveils-atlas-drc-robot
  10. http://www.theroboticschallenge.org/
  11. Defense Advanced Research Projects Agency (DARPA), DARPA Robotics Challenge (DRC) and Virtual Robotics Challenge (VRC), 2015, http://theroboticschallenge.org/about.
  12. Kaewlek N., Maneewarn T., Inclined plane walking compensation for a humanoid robot, [in:] Proceedings of the 2010 International Conference on Control, Automation and Systems (ICCAS), Gyeonggido, Korea, 2010, 1403–1407, DOI: 10.1109/ICCAS.2010.5670323.
  13. Kajita S., Morisawa M., Harada K., Kaneko K., Kanehiro F., Fujiwara K., Hirukawa H., Biped Walking Pattern Generator allowing Auxiliary ZMP Control, [in:] Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 2993–2999, DOI: 10.1109/IROS.2006.282233.
  14. Kaneko K., Kanehiro F., Kajita S., Morisawa M., Fujiwara K., Harada K., Hirukawa H., Motion Suspension System for Humanoids in case of Emergency - Real-time Motion Generation and Judgment to suspend Humanoid, [in:] Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 5496–5503, DOI: 10.1109/IROS.2006.282184.
  15. Kohlbrecher S., Conner D.C., Romay A., Bacim F., Bowman D.A., von Stryk O., Overview of Team ViGIR’s Approach to the Virtual Robotics Challenge, [in:] Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linkoping, Sweden, 2014, 1–2.
  16. Morisawa M., Kaneko K., Kanehiro F., Kajita S., Fujiwara K., Harada K., Hirukawa H., Motion Planning of Emergency Stop for Humanoid Robot by State Space Approach, [in:] Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 2986–2992, DOI: 10.1109/IROS.2006.282232.
  17. Nenchev D.N., Nishio A., Ankle and Hip Strategies for Balance Recovery of a Biped Subjected to an Impact, Robotica, Vol. 26, Iss. 5, 2008, 643–653, DOI: 10.1017/S0263574708004268.
  18. Ozel S., Eskimez S.E., Erbatur K., Humanoid Robot Orientation Stabilization by Shoulder Joint Motion During Locomotion, [in:] Proceedings of the 9th Asian Control Conference (ASCC), Istanbul, Turkey, 2013, 1–6, DOI: 10.1109/ASCC.2013.6606339.
  19. Raibert M., Legged Robots that Balance, 1986, MIT Press.
  20. Seven U., Akbas T., Fidan K.C., Yilmaz M., Erbatur K., Humanoid robot walking control on inclined planes, [in:] Proceedings of the 2011 IEEE International Conference on Mechatronics (ICM), Istanbul, Turkey, 2011, 875–880, DOI: 10.1109/ICMECH.2011.5971237.
  21. Stumpf A., Kohlbrecher S., Conner D.C., von Stryk O., Supervised Footstep Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking Controller [in:] Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 2014, 287–294, DOI: 10.1109/HUMANOIDS.2014.7041374.
  22. Tanaka T., Takubo. T., Inoue K., Arai T., Emergent stop for Humanoid Robots, [in:] Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 3970–3975, DOI: 10.1109/IROS.2006.281833.
  23. Wasielica M., Belter D., RRT-based motion planner and balance controller for a biped robot, Advances in Cooperative Robotics, World Scientific, 2016, 404–411, DOI: 10.1142/9789813149137_0048.
  24. Wasielica M., Wąsik M., Active stabilization of a humanoid robot base on inertial measurement unit data, International Conference on Mechatronics – Mechatronika (ME), Brno, Czech Republic, 2014, 364–369, DOI: 10.1109/MECHATRONIKA.2014.7018285.
  25. Wasielica M., Wąsik M., Kasiński A., Skrzypczyński P., Interactive Programming of a Mechatronic System: A Small Humanoid Robot Example, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 2013, 459–464, DOI: 10.1109/AIM.2013.6584134.
  26. Wasielica M., Wąsik M., Skrzypczyński P., Design and applications of a miniature anthropomorphic robot, “Pomiary Automatyka Robotyka”, Vol. 17, No. 2, 2013, 294–299.
  27. Yong-Duk K., In-Won P., Jeong-Ki Y., Jong-Hwan K., Stabilization control for humanoid robot to walk on inclined plane, [in:] Proceedings of the 8th IEEE-RAS International Conference on Humanoid Robots 2008 (Humanoids), Daejeon, Korea, 2008, 28–33, DOI: 10.1109/ICHR.2008.4755927.