Wireless passive sensor for crack detection exploiting RFID technology

eng Artykuł w języku angielskim DOI:

Mateusz Lisowski , wyślij Tadeusz Uhl AGH University of Science and Technology, Department of Robotics and Mechatronics

Pobierz Artykuł

Abstract

This paper presents concept of passive, wireless sensor based on RFID technology for detection of cracks in ceramic parts, plates and equipment. Main objectives of this work were to develop as cheap as possible, quantitative sensor without any power source that would be also extremely simple and has possibly long lifecycle. This type of sensor could be used in Structural Health Monitoring, in tasks connected with crack detection in concrete structures (special ceramic specimens embedded in structure) and another tasks related to detection of damages in any ceramic parts (bulletproof vest plates, ceramic bearing, insulator in power engineering). In this paper we present technical concept of sensor, investigations on planar coil calculation, entire system simulation, prototypes that check manufacturing possibilities.

Keywords

ceramic crack detection, concrete structure, planar coil designing, rfid, SHM, wireless sensors

Bezprzewodowy pasywny czujnik uszkodzeń wykorzystujący technologię RFID

Streszczenie

Artykuł ten opisuje koncepcję pasywnego, bezprzewodowego czujnika opartego na technologii RFID, służącego do detekcji pęknięć w elementach, płytkach i urządzeniach ceramicznych. Głównym celem badań było opracowanie taniego progowego czujnika bez żadnego źródła zasilania, o prostej zasadzie działania i możliwie długiej żywotności. Taki typ czujnika mógłby być używany w monitoringu stanu konstrukcji, w zadaniach związanych z detekcją pęknięć w strukturach żelbetowych (specjalne próbki ceramiczne umieszczone w konstrukcji) i innych zadaniach związanych z detekcją uszkodzeń elementów ceramicznych (płytki umieszczane w kamizelkach kuloodpornych, łożyska ceramiczne, izolatory w energetyce). Poniżej zaprezentowano pierwszą fazę badań (koncepcję czujnika, wybór sposobu zaprojektowania i obliczeń indukcyjności cewki planarnej, symulacja zasady działania, wytworzenie prototypów w celu sprawdzenia możliwości produkcyjnych).

Słowa kluczowe

czujnik bezprzewodowy, detekcja pęknięć w ceramice, konstrukcje żelbetowe, projektowanie cewek planarnych, rfid, SHM

Bibliografia

  1. Finkenzeller K., RFID Handbook, John Wiley & Sons Ltd, 2003, 29.
  2. Kurata N., Spencer B.F. Jr., Ruiz-Sandoval M., Risk Monitoring of Buildings Using Wireless Sensor Network, “Struct. Control Health Monit.” 2005; 12, 315-327.
  3. Puccinelli D., Haenggi M., Wireless Sensor Networks Applications and Challenges of Ubiquitous Sensing, “Circuits and Systems Magazine”, IEEE, vol. 5, 19-31, 2005.
  4. Lewis F.L., Wireless Sensor Networks, [in:] Cook D.J., Das S.K. (ed.), Smart Environments: Technologies, Protocols, and Applications, John Wiley, New York 2004.
  5. Philipose M., Smith J.R., Jiang B., Mamishev A., Sumit Roy, Sundara-Rajan K., Battery-Free Wireless Identification and Sensing, “Pervasive Computing”, IEEE, vol. 4, 37-45, Jan.-March 2005.
  6. Bhattacharyya R., Floerkemeier C., Sarma S., Low-Cost, Ubiquitous RFID-Tag-Antenna-Based Sensing, Proceedings of the IEEE, vol. 98, 1593-1600, Sept. 2010.
  7. Bhattacharyya R., Floerkemeier C., Sarma S., Towards Tag Antenna Based Sensing - An RFID Displacement Sensor, 2009 IEEE International Conference on RFID, 95-102, 27-28 April 2009.
  8. Pasupathy P., Zhuzhou M., Neikirk D.P., Wood S.L., Unpowered Resonant Wireless Sensor Nets for Structural Health Monitoring, “Sensors”, 2008 IEEE, 697-700, 26-29 Oct. 2008.
  9. Andringa M.M., Neikirk D.P., Dickerson N.P., Wood S.L., Unpowered Wireless Corrosion Sensor for Steel Reinforced Concrete, “Sensors”, 2005 IEEE, 4, 30 Oct. 2005 - 3 Nov. 2005.
  10. Andringa M., Unpowered Wireless Sensors for Structural Health Monitoring, Dissertation in UT Electronic Theses and Dissertations, 2006.
  11. Sample A.P., Yeager D.J., Powledge P.S., Mamishev A.V., Smith J.R., Design of an RFID-Based Battery-Free Programmable Sensing Platform, “IEEE Transactions on Instrumentation and Measurement”, vol. 57, 2608-2615, Nov. 2008.
  12. Smith J.R., Sample A.P., Powledge P.S., Sumit R., Mamishev A., A Wirelessly-Powered Platform for Sensing and Computation, Ubicomp 2006, LNCS 4206, 495-506, 2006.
  13. Philipose M., Smith J.R., Jiang B., Mamishev A., Sumit R., Sundara-Rajan K., Battery-Free Wireless Identification and Sensing, “Pervasive Computing”, IEEE, vol. 4, 37-45, Jan.-March 2005.
  14. Palmer C., Gutterman A., Argenna G., Inclan V., Zyuzin A., Wireless, Batteryless Distributed Strain Sensing for Structural Health Monitoring.
  15. Opasjumruskit K., Thanthipwan T., Sathusen O., Sirinamarattana P., Gadmanee P., Pootarapan E., Wongkomet N., Thanachayanont A., Thamsirianunt M., Self-Powered Wireless Temperature Sensors Exploit RFID Technology, “Pervasive Computing, IEEE”, vol. 5, 54-61, 2006.
  16. Oldenzijl R., Gaitens G., Dixon D., Conduct Radio Frequencies with Inks [in:] Turcu C. (ed.), Radio Frequency Identification Fundamentals and Applications Design Methods and Solutions, 251-264, InTech, February 2010.
  17. Volkman S.K., Pei Y., Redinger D., Yin S., Subramanian V., Ink-jetted Silver/Copper conductors for printed RFID applications, Mat. Res. Soc. Symp. Proc. Vol. 814, 2004. Materials Research Society.
  18. Nikitin P.V., Lam S., Rao K.V.S., Low Cost Silver Ink RFID Tag Antennas, Antennas and Propagation Society International Symposium, 2005 IEEE, vol. 2B, 353-356, 3-8 July 2005.
  19. Brooks D., Skin effect, [in:] Printed Circuit Design and Manufacturing, UP Media, December, 2009, UltraCAD Design, Inc.
  20. Leung S.Y.Y., Lam D.C.C., Geometric and Compaction Dependence of Printed Polymer-Based RFID Tag Antenna Performance, “IEEE Transactions on Electronics Packaging Manufacturing”, vol. 32, 120-125, April 2008.
  21. Kuhn W.B., Ibrahim N.M., Analysis of current crowding effects in multiturn spiral inductors, “IEEE Transactions on Microwave Theory and Techniques”, vol. 49, 31-38, Jan 2001.
  22. Kawabe K., Koyama H., Shirae K., Planar inductor, “IEEE Transactions on Magnetics”, vol. 20, 1804-1806, Sep. 1984.
  23. Salleh S., Salleh K., Hashim M.F., Majid Z.A., Design and analysis of 13.56 MHz RFID antenna based on modified wheeler equation: A practical approach, 2010 International Conference on Electronic Devices, Systems and Applications (ICEDSA), 326-330, 11-14 April 2010.
  24. AN2972 Application note - Designing an antenna for the M24LR64-R dual interface I2C/RFID device, Doc ID 15629 Rev 4, 2009 STMicroelectronics.
  25. microID 13.56 MHz RFID System Design Guide, DS21299E, 2004 Microchip Technology Inc.
  26. [www.eres.alpha.pl/elektronika/articles.php?article_id=18] - Cewki i dławiki.
  27. AC/DC Module - Model Library, ver. October 2007, COPYRIGHT 1994-2007 by COMSOL AB.
  28. Koprowski J., Elektrodynamika falowa, Wydawnictwa AGH, Kraków 2009.
  29. RFID Transponder operating at 13.56 MHz, 2012 CST AG - [www.cst.com].