Charakteryzacja termograficznego kanału skrytej komunikacji

pol Artykuł w języku polskim DOI: 10.14313/PAR_250/27

wyślij Krzysztof Sawicki , Grzegorz Bieszczad , Tomasz Sosnowski , Mariusz Mścichowski Wojskowa Akademia Techniczna, Instytut Optoelektroniki, ul. gen. S. Kaliskiego 2, 00-908 Warszawa

Pobierz Artykuł

Streszczenie

W artykule przedstawiono metodę wyznaczania charakterystyki pojemności informacyjnej termograficznego kanału komunikacji skrytej zbudowanego z promiennika ciepła (technicznego ciała czarnego) oraz kamery termowizyjnej. Wyznaczone charakterystyki stanowią dodatkowy parametr opisujący te urządzenia w kontekście ich nieoczywistego zastosowania do transmisji danych.

Słowa kluczowe

pojemność informacyjna, steganografia, termowizja

Characterization of Thermographic Covert Channel

Abstract

The paper presents a method for determining the characteristics of the information capacity of a thermographic covert communication channel made of a heat radiator (technical black body) and a thermal camera. The determined characteristics are an additional parameter describing these devices in the context of their non-obvious use for data transmission.

Keywords

channel capacity, steganography, termography

Bibliografia

  1. Wolf M., Covert channels in LAN protocols, “Local Area Network Security”, Springer, 1989, 89–101, DOI: 10.1007/3-540-51754-5_33.
  2. Mishra R., Bhanodiya P., A review on steganography and cryptography, 2015 International Conference on Advances in Computer Engineering and Applications, IEEE, 2015, 119–122, DOI: 10.1109/ICACEA.2015.7164679.
  3. Hamid N., Yahya A., Ahmad R.B., Al-Qershi O.M., Image Steganography Techniques: An Overview, “International Journal of Computer Science and Security”, Vol. 6, No. 3, 2012, 168–187.
  4. Gribermans D., Jersovs A., Rusakovs P., Development of requirements specification for steganographic systems, “Applied Computer Systems”, Vol. 20, No. 1, 2016, 40–48, DOI: 10.1515/acss-2016-0014.
  5. Guri M., Monitz M., Mirski Y., Elovici Y., Bitwhisper: Covert signaling channel between air-gapped computers using thermal manipulations, 2015 IEEE 28th Computer Security Foundations Symposium, IEEE, 2015, 276–289, DOI: 10.1109/CSF.2015.26.
  6. Madhavapeddy A., Sharp R., Scott D., Tse A., Audio networking: the forgotten wireless technology, “IEEE Pervasive Computing”, Vol. 4, No. 3, 2005, 55–60, DOI: 10.1109/MPRV.2005.50.
  7. Hanspach M., Goetz M., On covert acoustical mesh networks in air, arXiv preprint arXiv:1406.1213, 2014.
  8. Kuhn M.G., Anderson R.J., Soft tempest: Hidden data transmission using electromagnetic emanations, Springer, “Information Hiding”, Lecture Notes in Computer Science, Vol. 1525, 1998, 124–142, DOI: 10.1007/3-540-49380-8_10.
  9. Guri M., Kedma G., Kachlon A., Elovici Y., AirHopper: Bridging the air-gap between isolated networks and mobile phones using radio frequencies, 2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE), IEEE, 2014, 58–67, DOI: 10.1109/MALWARE.2014.6999418.
  10. Uzun C., Kahler N., De Peralta L.G., Kumar G., Bernussi A.A., Programmable infrared steganography using photoinduced heating of nanostructured metallic glasses, CLEO: Science and Innovations, Optica Publishing Group, 2017, DOI: 10.1364/CLEO_AT.2017.JTh2A.95.
  11. Sawicki K., Bieszczad G., Sosnowski T., ThermoSteg-Covert Channel for Microbolometer Thermographic Cameras, “Sensors”, Vol. 21, No. 19, 2021, DOI: 10.3390/s21196395.
  12. Shannon C.E., A mathematical theory of communication, ACM SIGMOBILE “Mobile Computing and Communications Review”, Vol. 5, No. 1, 2001, 3–55.
  13. López-Alonso J.M., Noise Equivalent Temperature Difference (NETD), “Encyclopedia of Optical and Photonic Engineering” (Print)-Five Volume Set, CRC Press, 2015.
  14. Bieszczad G.T., Sosnowski T.K., Sawicki K., Gogler S., Ligienza A., Mścichowski M., A Network of Miniature Thermal Imaging Sensors for Object Detection and Tracking [Sieć miniaturowych czujników termowizyjnych do wykrywania i śledzenia obiektów], “Pomiary Automatyka Robotyka”, T. 25, Nr 4, 2021, 57–66, DOI: 10.14313/PAR_242/57.
  15. Masti R.J., Rai D., Ranganathan A., Müller C., Thiele L., Capkun S., Thermal covert channels on multi-core platforms, 24th USENIX Conference on Security Symposium, 2015, 865–880.
  16. Marinetti S., Bison P., Grinzato E., Muscio A., Thermal diffusivity measurement of stainless steel by periodic heating technique, Proceedings of 5th International Workshop on Advanced Infrared Technology and Applications, 1999, 316–321.