Chwytak wielopalczasty dla robota usługowego – planowanie chwytów

pol Artykuł w języku polskim DOI:

Wojciech Szynkiewicz *, Krzysztof Czajkowski *, Cezary Zieliński *, wyślij Tomasz Winiarski *, Krzysztof Mianowski **, Konrad Banachowicz * * Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej ** Instytut Techniki Lotniczej i Mechaniki Stosowanej Politechniki Warszawskiej

Pobierz Artykuł

Streszczenie

W trzeciej części artykułu, poświęconego konstrukcji, sterowaniu oraz planowaniu ruchów trójpalczastego chwytaka, opisano sposób planowania chwytów dla tego chwytaka. Przedstawiono również wyniki wstępnych eksperymentów z tym chwytakiem.

Słowa kluczowe

chwytak wielopalczasty, planowanie chwytów, sterowanie robotami

Multifingered gripper for a service robot - grasp planning

Abstract

The third part of the paper devoted to the construction, control and motion planning for a three fingered gripper, describes the method of planning grasps. Moreover, the results of experiments with grasping diverse objects using the designed multi-fingered gripper have been presented.

Keywords

grasp planning, multi-fingered gripper, robot control

Bibliografia

  1. (2010): Blender otwarte środowisko do modelowania i animacji grafiki trójwymiarowej. http://www.blender.org.
  2. Bicchi, A. (1995): On the closure properties of robotic grasping. International Journal Robotics Research 14(4), 19-44.
  3. Borst, C., Fischer, M., Hirzinger, G. (1999): A fast and robust grasp planner for arbitrary 3D objects. In: IEEE International Conference on Robotics and Automation, pp. 1890-1896.
  4. Corporation, A. T. (2000): PCbird - Installation and Operation Guide.
  5. Cutkosky, M. R. (1989): On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks. IEEE Transactions on Robotics and Automation 5(3), 269-279.
  6. Ferrari, C., Canny, J. (1992): Planning optimal grasps. In: IEEE International Conference on Robotics and Automation, pp. 2290-2295, Nice, France.
  7. Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P. K. (2009): The Columbia Grasp Database. In: IEEE International Conference on Robotics and Automation, Kobe, Japan.
  8. Han, L., Trinkle, J., Li, Z. (200): Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation 16(6), 663-674.
  9. Khatib, O., Siciliano, B. (Eds.) (2008): Springer Handbook of Robotics. Springer, chapters: 15, 27, 28.
  10. Li, Z., Sastry, S. S. (1988): Task-oriented optimal grasping by multifingered robotic hands. IEEE Journal of Robotics and Automation 4(1), 32-44.
  11. Miller, A. T., Allen, P. K. (1999): Examples of 3D grasp quality computations. In: IEEE International Conference on Robotics and Automation, pp. 1240-1246.
  12. Miller, A. T., Allen, P. K. (2004): GraspIt!: A Versatile Simulator for Robotic Grasping. IEEE Robotics and Automation Magazine 11(4), 110-122.
  13. Miller, A. T., Knoop, S., Christensen, H. I., Allen, P. K. (2003): Automatic grasp planning using shape primitives. In: IEEE International Conference on Robotics and Automation, pp. 1824-1829.
  14. Murray, R. M., Li, Z., Sastry, S. S. (1994): A Mathematical Introduction to Robotic Manipulation. CRC Press.
  15. Park, Y., Starr, G. (1992): Grasp synthesis of polygonal objects using a three-fingered robotic hand. Int. Journal of Robotics Research 11(3), 163-184.
  16. Shimoga, K. (1906): Robot grasp synthesis algorithms: A survey. Int. Journal of Robotics Research 15(3), 230-266.
  17. Zieliński, C. (1999): The MRROC++ System. In: First Workshop on Robot Motion and Control (RoMoCo’99), pp. 147-152, Kiekrz, Polska.
  18. Zieliński, C., Winiarski, T. (2010): Motion Generation in the MRROC++ Robot Programming Framework. International Journal of Robotics Research 29(4), 386-413.