Wyznaczanie realizacji dodatniej liniowego układu hybrydowego typu SISO w postaci drugiego modelu Fornasiniego-Marchesiniego
Streszczenie
Sformułowano problem realizacji dla hybrydowych dodatnich układów liniowych o jednym wejściu i jednym wyjściu (SISO), w postaci drugiego modelu Fornasiniego-Marchesiniego. Zaproponowano metodę wyznaczania realizacji dodatniej dla danej transmitancji właściwej w oparciu o schemat zmiennych stanu. Podano warunki wystarczające na istnienie realizacji dodatniej dla danej transmitancji właściwej. Sformułowano również procedurę wyznaczania realizacji dodatniej, którą zilustrowano przykładem numerycznym.
Słowa kluczowe
model Fornasiniego-Marchesiniego, układ hybrydowy, układ liniowy
Computation of positive realization of hybrid linear SISO systems described by the second Fornasini-Marchesini model
Abstract
The realization problem for positive linear hybrid systems with single input and single output (SISO), described by the second Fornasini-Marchesini model is formulated. The method based on the state variable diagram for finding a positive realization of a given proper transfer function is proposed. Sufficient conditions for the existence of a positive realization of a given proper transfer function are established. A procedure for computation of a positive realization is proposed and illustrated by a numerical example.
Keywords
Fornasini-Marchesini model, hybrid system, linear system
Bibliografia
- L. Benvenuti and L. Farina: A tutorial on the positive realization problem, IEEE Trans. Autom. Control, vol. 49, No 5, 2004, pp. 651-664.
- L. Farina and S. Rinaldi: Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000.
- T. Kaczorek and M. Busłowicz: Reachability and minimum energy control of positive linear discrete-time systems with one delay, 12th Mediterranean Conference on Control and Automation, June 6-9, 2004, Kusadasi, Izmir, Turkey.
- T. Kaczorek and M. Busłowicz: Minimal realization problem for positive multivariable linear systems with delay, Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2, 2004, pp. 181-187.
- T. Kaczorek and Ł. Sajewski: Computation of positive realization of MIMO hybrid linear systems with delays using the state variable diagram method, 16th International Conference on Systems Science, Wrocław 4 - 6 Wrzesień 2007, Vol. 1, 2007, pp. 150-160.
- T. Kaczorek and Ł. Sajewski: Computation of positive realization of MIMO hybrid linear systems using the state variable diagram method, Archives of Control Sciences - Vol. 17, 2007, No.1 pp. 5-21.
- T. Kaczorek and Ł. Sajewski: Realization problem for positive 2D hybrid systems with one delay in state and input vectors, 8th International Workshop “Computational Problems of Electrical Engineering”, Wilkasy 14 - 16 Wrzesień 2007, Przegląd Elektrotechniczny - 2/2007, pp. 242-246.
- T. Kaczorek: Some recent developments in positive systems, Proc. 7th Conference of Dynamical Systems Theory and Applications, pp. 25-35, Łódź 2003.
- T. Kaczorek: Positive 1D and 2D systems, Springer Verlag, London 2002.
- T. Kaczorek: A realization problem for positive continues-time linear systems with reduced numbers of delay, Int. J. Appl. Math. Comp. Sci. 2006, Vol. 16, No. 3, pp. 325-331.
- T. Kaczorek: Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, Int. J. Appl. Math. Comp. Sci. 2006, Vol. 16, No. 2, pp. 101-106.
- T. Kaczorek: Realization problem for positive discrete-time systems with delay, System Science, Vol. 30, No. 4, 2004, pp. 117-130.
- T. Kaczorek: Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, Bull. Pol. Acad. Sci. Techn., Vol 53, No 3, 2005, pp. 293-298.
- T. Kaczorek: Positive 2D hybrid linear systems, Proc. Inter. Conf. Numerical Linear Algebra in Signals Systems and Control 2007.
- T. Kaczorek: Realization problem for positive 2D hybrid systems, Submitted to COMPEL.
- T. Kaczorek: Two-Dimensional Linear Systems, Springer Verlag, Berlin 1985.
- T. Kaczorek: Determination of singular positive realization of improper transfer function of 2D linear systems, SMC Zakopane 2007.
- J. Klamka: Controllability of Dynamical Systems, Kluwer Academic Publ., Dordrecht, 1991.
- J. Kurek: The general state-space model for a two-dimensional linear digital system, IEEE Trans. Austom. Contr. AC-30 , June 1985, pp. 600-602.
- V. M. Marchenko and O. N. Poddubnaya: Relative controllability of stationary hybrid systems, 10th IEEE Int. Conf. on Methods and Models in Automation and Robotics, 30 Aug. -2 Sept. 2004, Międzyzdroje, Poland pp. 267-272.
- V. M. Marchenko, O. N. Poddubnaya, Z. Zaczkiewicz: On the observability of linear differential-algebraic systems with delays, IEEE Trans. Autom. Contr. Vol. 51, No. 8, 2006, pp. 1387-1392.
- R. B. Roesser: A discrete state-space model for linear image processing, IEEE Trans. on Automatic Control, AC-20, 1 (1975), pp. 1-10.