Identification and Compensation of Gyroscope Measurement Errors: Signal Filtering Based on Static and Dynamic Measurements in an Inertial Navigation System
Abstract
This paper addresses the issue of identifying measurement errors in the MEMS gyroscope, which serves as the primary source of data for the rocket’s inertial navigation system (INS). The research focused on error analysis through static and dynamic testing, followed by a detailed analysis of angular velocity measurement data from the flight of a stabilized rocket, guided to a specific point in space. The objective of the study was to determine and filter gyroscope measurement errors, such as bias, random walk, and noise. An adaptive filter was proposed, which adjusts to the changing dynamics of the rocket, allowing for more effective compensation of these errors. In the final section, conclusions are presented that identified shortcomings in the algorithm and outlined directions for further work on its optimization. The algorithm was validated in static, dynamic, and actual rocket flight conditions.
Keywords
adaptive filtering, inertial navigation, measurement error compensation, MEMS gyroscope, missile navigation system
Identyfikacja i kompensacja błędów pomiarowych giroskopów: filtracja sygnałów na podstawie badań statycznych i dynamicznych inercyjnego systemu nawigacji
Streszczenie
Celem pracy była analiza identyfikacji błędów pomiarowych w giroskopach typu MEMS, które stanowią główne źródło danych dla bezwładnościowego systemu nawigacyjnego (INS) opracowanej rakiety. Badania skupiły się na analizie błędów przeprowadzając testy statyczne i dynamiczne, po których nastąpiła szczegółowa analiza danych pomiarowych prędkości kątowej również z lotu rakiety kierowanej do określonego punktu w przestrzeni. Celem badania było określenie i filtrowanie błędów pomiarowych giroskopu, takich jak bias, random walk i szum. Na podstawie wyników zaproponowano filtr adaptacyjny, który dostosowuje się do zmieniającej się dynamiki rakiety, umożliwiając skuteczniejszą kompensację tych błędów. W części końcowej przedstawiono wnioski, które zidentyfikowały niedociągnięcia w algorytmie i nakreśliły kierunki dalszych prac nad jego optymalizacją. Algorytm został zweryfikowany w warunkach statycznych, dynamicznych i rzeczywistych warunków lotu rakiety.
Słowa kluczowe
filtry adaptacyjne, korekta błędów pomiarowych, nawigacja inercyjna, system nawigacyjny rakiet, żyroskopy MEMS
Bibliografia
- Thienel J.K., Sanner R.M., A Coupled Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise, “IEEE Transactions on Automatic Control”, Vol. 48, No. 11, 2003, 2011–2015, DOI: 10.1109/TAC.2003.819289.
- Gelb A., Sutherland A., Design approach for reducing gyro-induced errors in strapdown inertial systems, Control and Flight Dynamics Conference, 1968, DOI: 10.2514/6.1968-830.
- Miller J.E., Feldman J., Gyro reliability in the Apollo Guidance, Navigation and Control system, “Journal of Spacecraft and Rockets”, Vol. 5, No. 6, 2008, 638–643, DOI: 10.2514/3.29323.
- Mark J., Brown A., Matthews T., Quantization reduction for evaluating laser gyro performance using a moving average filter, IEEE International Conference on Acoustics, Speech and Signal Processing 1984, DOI: 10.1109/ICASSP.1984.1172629.
- Zhu C., Cai S., Yang Y., Xu W., Shen H., Chu H., A Combined Method for MEMS Gyroscope Error Compensation Using a Long Short-Term Memory Network and Kalman Filter in Random Vibration Environments, “Sensors”, Vol. 21, No. 4, 2021, DOI: 10.3390/s21041181.
- Zhu Z., Bo Y., Jiang C., A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network, “Mathematical Problems in Engineering”, 2019, DOI: 10.1155/2019/5491243.
- Jiang C., Chen S., Chen Y., Zhang B., Feng Z., Zhou H., Bo Y., A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN), “Sensors”, Vol. 18, No. 10, 2018, DOI: 10.3390/s18103470.
- Zhang H., Wang W., Li W., Wang P., Ren G., Ma G., Wang S., Zheng Yu., Shluga S.N., An estimation of the mems gyroscope error based on the Kalman filter algorithm, “Telecommunications and Radio Engineering”, Vol. 78, No. 4, 2019, 1295–1301, DOI: 10.1615/TelecomRadEng.v78.i14.70.
- Guo H., Hong H., Research on Filtering Algorithm of MEMS Gyroscope Based on Information Fusion, “Sensors”, Vol. 19, No. 16, 2019, DOI: 10.3390/s19163552.
- Liu Y., Guo Z., Zhang Q., Modeling of MEMS gyroscope Random Error Based on Kalman Filter, IEEE Symposium Series on Computational Intelligence (SSCI) 2019, DOI: 10.1109/SSCI44817.2019.9002682.
- Chia J., Low K., Goh S., Xing Y., A low complexity Kalman filter for improving MEMS based gyroscope performance, Proceedings of the 2016 IEEE Aerospace Conference, DOI: 10.1109/AERO.2016.7500795.
- Noureldin A., Karamat T.B., Georgy J., Inertial Navigation System, Kalman Filter, “Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration”, Springer 2012, 125–166, 225–245, DOI: 10.1007/978-3-642-30466-8.
- Xue L., Jang C., Chang H., Yang Y., Qin W., Yuan W., A novel Kalman filter for combining outputs of MEMS gyroscope array, “Measurement”, Vol. 45, No. 4, 2012, 745–754, DOI: 10.1016/j.measurement.2011.12.016.
- Erzberger H., Application of Kalman Filtering to error correction of inertial navigators, National Aeronautics and Space Administration, 1967.
- Galante J.M., Sanner R.M., A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation, AIAA Guidance, Navigation and Control Conference 2012, DOI: 10.2514/6.2012-4475.
- Brown S.D., Rutan S.C., Adaptive Kalman Filtering, “Journal of Research of the National Bureau of Standards”, Vol. 90, No 6, 1985, 403–407.
- Fazelinia M., Ebadollahi S., Ganjefar S., Stochastic analysis of drift error of gyroscope in the single-axis attitude determination, “Measurement”, Vol. 237, 2024, DOI: 10.1016/j.measurement.2024.115136.
- Kim I., Kang T., Lee J.G., Design of a gyroscope with minimum error covariance, “Control Engineering Practice”, Vol. 3, No. 7, 1995, 933–937, DOI: 10.1016/0967-0661(95)00076-7.
- Hameed Aslam Q., Iqbal A., Bibi F., Bibi S., Error Estimation of Inertial Sensors using Allan Variance, “IFAC Proceedings Volumes”, Vol. 41, No. 1, 2008, 167–171, DOI: 10.3182/20080408-3-IE-4914.00030.
- Allan Variance: Noise Analysis for Gyroscopes, Freescale Semiconductor, Application Note 2015, Document Number: AN5087.
- Hou H., Modeling Inertial Sensors Using Allan Variance, Master Degree, University of Calgary 2004.
- Kadian K., Garhwal S., Kumar A., Quantum walk and its application domains: A systematic review, “Computer Science Review”, Vol. 41, 2021, DOI: 10.1016/j.cosrev.2021.100419.
- Boncelet C., Chapter 7 – Image Noise Models, “The Essential Guide to Image Processing”, 2009, 143–167, DOI: 10.1016/B978-0-12-374457-9.00007-X.
- Zeng Y., Liu Y., Zhang M., A method for compensating random errors in MEMS gyroscopes based on interval empirical mode decomposition and ARMA, “Measurement Science and Technology”, Vol. 35, No. 1, 2023, DOI: 10.1088/1361-6501/ad00d3.
- Wang J., Yang G., Liu F., An InRun Automatic Demodulation Phase Error Compensation Method for MEMS Gyroscope in Full Temperature Range, “Micromachines”, Vol. 15, No. 7, 2024, DOI: 10.3390/mi15070825.
- Sheng Cai., Zhu C., Yang Y., A Combined Method for MEMS Gyroscope Error Compensation Using a Long Short-Term Memory Network and Kalman Filter in Random Vibration Environments, “Sensors”, Vol. 21, No. 4, 2021, DOI: 10.3390/s21041181.
- Long Y., Liu Z., Hao C., MEMS Gyroscope Multi-Feature Calibration Using Machine Learning Technique, arXiv, 2024, DOI: 10.48550/arXiv.2410.07519.
- Pan F., Zheng S., Yin Ch., MoE-Gyro: Self-Supervised Over-Range Reconstruction and Denoising for MEMS Gyroscopes, arXiv, 2024, DOI: 10.48550/arXiv.2506.06318.
- Randall R.B., Tordon M.J., Data Acquisition, “Encyclopedia of Vibration”, 2001, 364-376, DOI: 10.1006/rwvb.2001.0142.
- Mohammadi Z., Salarieh H., Investigating the effects of quadrature error in parametrically and harmonically excited MEMS rate gyroscopes, “Measurement”, Vol. 87, 2016, 152–175, 10.1016/j.measurement.2016.03.013.
- Brisebois G., Op Amp Selection Guide for Optimum Noise Performance. Chapter 422, Analog Circuit Design 2015, Vol. 3, 907–908.
