Zautomatyzowane testowanie poprawności procesu na linii produkcyjnej w oparciu o technikę RFID

pol Artykuł w języku polskim DOI: 10.14313/PAR_256/67

Bartosz Pawłowicz *, wyślij Arkadiusz Stęchły *, Bartosz Trybus *, Adrian Kosior *, Marek Ruman ** * Politechnika Rzeszowska, Wydział Elektrotechniki i Informatyki, ul. Wincentego Pola 2, 35-021 Rzeszów ** Elcont sp. z o.o. Trzebownisko 928c, 36-001 Trzebownisko

Pobierz Artykuł

Streszczenie

Technika RFID pozwala na zautomatyzowanie procesów produkcyjnych, szczególnie w zakresie kontroli jakości, zarządzaniu zasobami i optymalizacji produkcji. W ramach przedstawionego rozwiązania zaprojektowany i skonstruowany został model laboratoryjny linii produkcyjnej, w którym zastosowano identyfikatory RFID do identyfikacji poprawności obróbki komponentu na różnych etapach przetwarzania oraz jego ostatecznego sortowania. Wyniki testów potwierdzają skuteczność systemu w klasyfikacji produktów oraz wskazują na wpływ orientacji i odległości pomiędzy identyfikatorami a czytnikami na wydajność systemu.

Słowa kluczowe

automatyzacja produkcji, kontrola jakości, przemysł 4.0, rfid

Automated Production Line Process Validation Using RFID Technology

Abstract

RFID technology allows for the automation of production processes, especially in quality control, resource management and production optimization roles. In this study, a laboratory model of a production line was created, using RFID tags to identify the accurate processing of a component at several processing stages and its final sorting. Test results confirm the effectiveness of the system in product classification and show the influence of orientation and distance between tags and readers on system performance.

Keywords

industry 4.0, manufacturing automation, production line, quality control, rfid

Bibliografia

  1. Rafiquea M.Z., Haidera M., Raheema A., Ab Rahmanb M.N., Amjada M.S., Essential Elements for Radio Frequency Identification (RFID) adoption for Industry 4.0 Smart Manufacturing in Context of Technology-Organization-Environment (TOE) Framework—A Review, “Jurnal Kejuruteraan”, Vol. 34, No. 1, 2022, DOI: 10.17576/jkukm-2022-34(1)-01.
  2. Xu S., Chen J., Wu M., Zhao C., E-commerce supply chain process optimization based on whole-process sharing of internet of things identification technology, “Computer Modeling in Engineering and Sciences”, Vol. 126, No. 2, 2021, 843–854, DOI: 10.32604/cmes.2021.014265.
  3. Demčák J., Židek K., Krenický T., Digital Twin for Monitoring the Experimental Assembly Process Using RFID Technology, “Processes”, Vol. 12, No. 7, 2024, DOI: 10.3390/pr12071512.
  4. Pasupuleti V., Thuraka B., Kodete C.S., Malisetty S., Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management, “Logistics”, Vol. 8, No. 3, 2024, DOI: 10.3390/logistics8030073.
  5. Rojek I., Jasiulewicz-Kaczmarek M., Piszcz A., Galas K., Mikołajewski D., Review of the 6G-Based Supply Chain Management within Industry 4.0/5.0 Paradigm, “Electronics”, Vol. 13, No. 13, 2024, DOI: 10.3390/electronics13132624.
  6. Santos J.A.M., Martins M.S.E., Pinto R.M., Vieira S.M., Towards Sustainable Inventory Management: A Many-Objective Approach to Stock Optimization in Multi-Storage Supply Chains, “Algorithms”, Vol. 17, No. 6, 2024, DOI: 10.3390/a17060271.
  7. Parodos L., Tsolakis O., Tsoukos G., Xenou E., Ayfantopoulou G., Business Model Analysis of Smart City Logistics Solutions Using the Business Model Canvas: The Case of an On-Demand Warehousing E-Marketplace, “Future Transportaion”, Vol. 2, No. 2, 2022, 467–481, DOI: 10.3390/futuretransp2020026.
  8. Gomes H., Navio F., Gaspar P.D., Soares V.N.G.J., Caldeira J.M.L.P., Radio-Frequency Identification Traceability System Implementation in the Packaging Section of an Industrial Company, “Applied Sciences”, Vol. 13, No. 23, 2023, DOI: 10.3390/app132312943.
  9. van Geest M., Tekinerdogan B., Catal C., Smart Warehouses: Rationale, Challenges and Solution Directions, “Applied Sciences”, Vol. 12, No. 1, 2022, DOI: 10.3390/app12010219.
  10. Zhou W., Piramuthu S., Manufacturing with item-level RFID information: From macro to micro quality control, “International Journal of Production Economics”, Vol. 135, No. 2, 2012, 929–938, DOI: 10.1016/j.ijpe.2011.11.008.
  11. Bibi F., Guillaume C., Gontard N., Sorli B., A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products, “Trends in Food Science & Technology”, Vol. 62, 2017, 91–103, DOI: 10.1016/j.tifs.2017.01.013.
  12. Zuo J., Feng J., Gameiro M., Tian Y., Liang J., Wang Y., Ding J., He Q., RFID-based sensing in smart packaging for food applications: A review, “Future Foods”,Vol. 6, 2022, DOI: 10.1016/j.fufo.2022.100198.
  13. Bendavid Y., Boeck H., Philippe R., RFID-Enabled Traceability System for Consignment and High Value Products: A Case Study in the Healthcare Sector, “Journal of Medical Systems”, Vol. 36, 2012, 3473–3489, DOI: 10.1007/s10916-011-9804-0.
  14. Yadav B., (2024). Smart RFID and IoT-Based Patient Monitoring Systems in Modern Healthcare, “International Journal of Engineering and Management Research”, Vol. 14, No. 5, 2024, 89–93, DOI: 10.5281/zenodo.14064940.
  15. Yi J., Chen J., Enhancement of Two-Dimensional Barcode Restoration Based on Recurrent Feature Reasoning and Structural Fusion Attention Mechanism, “Electronics”, Vol. 13, No. 10, 2024, DOI: 10.3390/electronics13101873.
  16. Wang L., Luo Z., Guo R., Li Y., A Review of Tags Anti-Collision Identification Methods Used in RFID Technology, “Electronics”, Vol. 12, No. 17, 2023, DOI: 10.3390/electronics12173644.
  17. Finkenzeller K., RFID Handbook—Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed., Wiley: Hoboken, NJ, USA, 2010.
  18. Nizioł M., Jankowski-Mihułowicz P., Węglarski M., Determination of Parameters of Radio Frequency Identification Transponder Antennas Dedicated to IoTT Systems Located on Non-Planar Objects, “Electronics”, Vol. 13, No. 14, 2024, DOI: 10.3390/electronics13142800.
  19. Lai Y.-C., Chen S.-Y., Hailemariam Z.L., Lin C.-C., A Bit-Tracking Knowledge-Based Query Tree for RFID Tag Identification in IoT Systems, “Sensors”, Vol. 22, No. 9, 2022, DOI: 10.3390/s22093323.
  20. Filho I.E.d.B., Silva I., Viegas C.M.D., An Effective Extension of Anti-Collision Protocol for RFID in the Industrial Internet of Things (IIoT), “Sensors”, Vol. 18, No. 12, 2018, DOI: 10.3390/s18124426.
  21. Dastres R., Soori M., Asamel M., Radio Frequency Identification (RFID) based wireless manufacturing systems, a review, “Independent Journal of Management & Production”, Vol. 13, No. 1, 2022, 258–290, DOI: 10.14807/ijmp.v13i1.1497.
  22. Elbasani E., Siriporn P., Choi J.S., A Survey on RFID in Industry 4.0, Internet of Things for Industry 4.0: Design, Challenges and Solutions, 2020, 1–16, DOI: 10.1007/978-3-030-32530-5_1.
  23. Hakeem A.A., Solyali D., Asmael M., Zeeshan Q., Smart manufacturing for Industry 4.0 using radio frequency identification (RFID) technology, “Jurnal Kejuruteraan”, Vol. 32, No. 1, 2020, 31–38, DOI: 10.17576/JKUKM-2020-32(1)-05.
  24. Budzik G., Woźniak J., Paszkiewicz A., Przeszłowski Ł., Dziubek T., Dębski M., Methodology for the Quality Control Process of Additive Manufacturing Products Made of Polymer Materials, “Materials”, Vol. 14, No. 9, 2021, DOI: 10.3390/ma14092202.
  25. Dobkin D.M., The RF in RFID: UHF RFID in Practice, 2nd ed., Newnes: Oxford, UK, 2012.