Nieliniowe sterowanie predykcyjne ramion manipulatorów
Streszczenie
Przedmiotem artykułu są algorytmy sterowania predykcyjnego (typu MPC – Model Predictive Control) ramion manipulatorów sztywnych. Zastosowano MPC z modelem w przestrzeni stanów i wykorzystano najnowszą technikę tłumienia zakłóceń i błędów modelowania, pozwalającą uniknąć dynamicznego modelowania zakłóceń lub uciekania się do dodatkowych technik ich eliminowania, takich jak SMC. Rozważane są przede wszystkim najbardziej efektywne obliczeniowo algorytmy MPC-NPL (NPL – Nonlinear Prediction and Linearization), w dwóch wersjach: z optymalizacją QP (Quadratic Programming) z ograniczeniami i z jawną optymalizacją bez ograniczeń i spełnieniem ograniczeń nierównościowych a posteriori. Dla wszystkich rozważanych algorytmów przeprowadzono kompleksową analizę symulacyjną sterowania manipulatorem z napędem bezpośrednim, przy dwóch rodzajach zakłócenia: zewnętrznym i parametrycznym. Wyniki porównano z uzyskanymi dla znanego algorytmu CTC-PID (CTC – Computer Torque Control), uzyskując lepszą jakość regulacji algorytmami MPC. Zbadano wpływ długości okresu próbkowania i obliczeniowego opóźnienia sterowania na jakość regulacji, co jest istotne dla algorytmów z szybkim próbkowaniem opartych na modelach.
Słowa kluczowe
opóźnienie sterowania, sterowanie manipulatorów, sterowanie nieliniowe, sterowanie predykcyjne, szybkie próbkowanie
Nonlinear Predictive Control of Manipulator Arms
Abstract
The subject of the article are predictive control algorithms (of MPC type – Model Predictive Control) for rigid manipulator arms. MPC with a state-space model and with the latest disturbance and modeling error suppression technique was applied, which avoids dynamic disturbance modeling or resorting to additional disturbance cancellation techniques, such as SMC. First of all, the most computationally efficient MPC-NPL (Nonlinear Prediction and Linearization) algorithms are considered, in two versions: the first with constrained QP (Quadratic Programming) optimization and the second with explicit (analytical) optimization without constraints and satisfying a posteriori inequality constraints. For all considered algorithms, a comprehensive simulation analysis was carried out for a direct drive manipulator, with two kinds of disturbances: external and parametric. The obtained results were compared with those for the well-known CTC-PID algorithm (CTC – Computer Torque Control), showing better control quality with MPC algorithms. In addition, the influence of the length of the sampling period and of the computational delay on control quality was investigated, which is important for model-based algorithms with fast sampling.
Keywords
contrlo delay, fast sampling, manipulator control, model predictive control, nonlinear control system
Bibliografia
- Benniran A., Predictive optimizing reference governor for constrained 2 dof’s robot with abrupt set-point trajectories. „Journal of Applied Science”, Sabratha University, No. 1, 2018, 39–49, DOI: 10.47891/sabujas.v1i1.39-49.
- Blevins T.L., McMillan G.K., Wojsznis W.K., Brown M.W., Advanced Control Unleashed. The ISA Society, Research Triangle Park, NC, 2003.
- Blevins T.L., Wojsznis W.K., Nixon M., Advanced Control Foundation: Tools, Techniques, and Applications. The ISA Society, Research Triangle Park, NC, 2013.
- Bouzoualegh S., Guechi E., Zennir Y., Model predictive control of a three degrees of freedom manipulator robot. [In:] Proceedings of the 3rd International Conference on Advanced Systems and Emergent Technologies, Hammamet, Tunisia, 2019, 84–89, DOI: 10.1109/ASET.2019.8870999.
- Bożek A., Trybus L., Tuning PID and PI-PI servo controllers by multiple pole placement. „Bulletin of the Polish Academy of Sciences Technical Sciences”, Vol. 70, No. 1, 2022, 1–12, DOI: 10.24425/bpasts.2021.139957.
- Bumroongsri P., Kheawhom S., Interpolation-based off-line MPC for LPV systems. [In:] Proceedings of the 10th IFAC International Symposium on Dynamics and Control of Process Systems, Mumbai, India, 2013.
- Camacho E.F., Bordons C., Model Predictive Control. Springer Verlag, London, 1999.
- Cisneros P.S.G., Sridharan A., Werner H., Constrained predictive control of a robotic manipulator using quasi-LPV representations. „IFAC-PapersOnLine”, Vol. 51, No. 26, 2018, 118–123, DOI: 10.1016/j.ifacol.2018.11.158.
- Ferrara A., Incremona G.P., Magni L., A robust MPC/ISM hierarchical multiloop control scheme for robot manipulators. [In:] Proceedings of the 52nd Conference on Decision and Control, Florence, Italy, 2013, DOI: 10.1109/CDC.2013.6760430.
- Lewis F.L., Dawson D.M., Abdallah C.T., Robot Manipulator Control Theory and Practice. CRC Press, Boca Raton, 2003.
- Incremona G.P., Ferrara A., Magni L., MPC for robot manipulators with integral sliding modes generation. „IEEE/ASME Transactions on Mechatronics”, Vol. 22, No. 3, 2017, 1299–1307, DOI: 10.1109/TMECH.2017.2674701.
- Kelly R., Santibáñez V., Loría A., Control of Robot Manipulators in Joint Space. Springer, London 2005, DOI: 10.1007/b135572.
- Khan M.F., Islam R., Iqbal J., Control strategies for robotic manipulators. [In:] Proceedings of the 2012 International Conference of Robotics and Artificial Intelligence, Rawalpindi, Pakistan, DOI: 10.1109/ICRAI.2012.6413422.
- Kleff S., Meduri A., Budhiraja R., Mansard N., Righetti L., High-frequency nonlinear model predictive control of a manipulator. [In:] Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 2021, DOI: 10.1109/ICRA48506.2021.9560990.
- Ławryńczuk M., Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach. „Studies in Systems, Decision and Control”, Vol. 3. Springer Verlag, Heidelberg 2014, DOI: 10.1007/978-3-319-04229-9.
- Ławryńczuk M., Tatjewski P., Offset-free state-space nonlinear predictive control for Wiener systems. „Information Sciences”, Vol. 511, 2020, 127–151, DOI: 10.1016/j.ins.2019.09.042.
- Maciejowski J.M., Predictive Control with Constraints. Prentice Hall, Harlow, England, 2002.
- Nicolis D., Allevi F., Rocco P., Operational space model predictive sliding mode control for redundant manipulators. „IEEE Transactions on Robotics”, Vol. 36, No. 4, 2020, 1348–1355, DOI: 10.1109/TRO.2020.2974092.
- Qin S.J., Badgwell T.A., A survey of industrial model predictive control technology. „Control Engineering Practice”, Vol. 11, No. 7, 2003, 733–764, DOI: 10.1016/S0967-0661(02)00186-7.
- Reyes F., Kelly R., Experimental evaluation of identification schemes on a direct drive robot. „Robotica”, Vol. 15, No. 5, 1997, 563–571, DOI: 10.1017/S0263574797000659.
- Rybus T., Seweryn K., Sąsiadek J.Z., Application of predictive control for manipulator mounted on a satellite. „Archives of Control Sciences”, Vol. 28, No. 1, 2018, 105–118, DOI: 10.24425/119079.
- Spong M., Hutchinson S., Vidyasagar M., Robot Modeling and Control. J. Wiley and Sons, 2005.
- Spong M.W., An historical perspective on the control of robotic manipulators. „Annual Reviews of Control, Robotics, and Autonomous Systems”, Vol. 5, 2022, 1–31, DOI: 10.1146/annurev-control-042920-094829.
- Tatjewski P., Advanced Control of Industrial Processes. Structures and Algorithms. Springer Verlag, London 2007, DOI: 10.1007/978-1-84628-635-3.
- Tatjewski P., Disturbance modeling and state estimation for offset-free predictive control with state-spaced process models. „International Journal of Applied Mathematics and Computer Science”, Vol. 24, No. 2, 2014, 313–323.
- Tatjewski P., Offset-free nonlinear predictive control with measured state and unknown asymptotically constant disturbances. [In:] Malinowski K., Józefczyk J., Świątek J. (eds), „Aktualne problemy automatyki i robotyki”, 288– 299, Academic Publisher EXIT, Warszawa 2014.
- Tatjewski P., Sterowanie zaawansowane procesów przemysłowych. Struktury i algorytmy. Wydanie drugie, zmienione (e-book). Akademicka Oficyna Wydawnicza EXIT, Warszawa 2016.
- Tatjewski P., Offset-free nonlinear Model Predictive Control with state-space process models. „Archives of Control Sciences”, Vol. 27, No. 4, 2017, 595–615, DOI: 10.1515/acsc-2017-0035.
- Tatjewski P., Ławryńczuk M., Algorithms with state estimation in linear and nonlinear model predictive control. „Computers and Chemical Engineering”, Vol. 143, 2020, DOI: 10.1016/j.compchemeng.2020.107065.
- Wilson J., Charest M., Dubay R., Non-linear model predictive control schemes with application on a 2 link vertical robot manipulator. „Robotics and Computer-Integrated Manufacturing”, Vol. 41, 2016, 23–30, DOI: 10.1016/j.rcim.2016.02.003.