Transforming Biological Patterns into Robot Concepts

eng Artykuł w języku angielskim DOI: 10.14313/PAR_247/27

wyślij Teresa Zielińska Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, 00-665 Warsaw

Pobierz Artykuł

Abstract

Biology not only provides inspiration in the design of walking machines, but also suggests detailed design solutions. Concise information on legged locomotion in the animal world is presented, and the relationships between engineering solutions and the biological world are shown. The construction of animal legs is briefly described and the most commonly used leg structures for walking machines are discussed, including references to biological patterns. Examples of bio-inspired walking machines developed by our team are given and several concepts of bio-inspired robots are discussed. The general aim of the article is to show how knowledge of the animal world inspires innovative design solutions for robots intended for practical applications.

Keywords

bio-robotics, biological template, design, hexapod, quadruped, walking machine

Transformowanie wzorców biologicznych na koncepcje robotyczne

Streszczenie

Biologia nie tylko dostarcza inspiracji w pracach nad maszynami kroczącymi, ale także podpowiada szczegółowe rozwiązania konstrukcyjne. Głównym celem tego artykułu jest zilustrowanie na przykładach jak wzorce biologiczne przekształcane są w konkretne rozwiązania techniczne. Przedstawiono zwięzłe informacje na temat lokomocji nożnej w świecie zwierzęcym i pokazano związki między rozwiązaniami inżynierskimi a światem biologicznym. Pokrótce opisano budowę nóg zwierząt oraz najczęściej stosowane struktury nóg maszyn kroczących z uwzględnieniem odniesień do wzorców biologicznych. Podano przykłady opracowanych przez nasz zespół inspirowanych biologicznie maszyn kroczących oraz omówiono kilka koncepcji robotów inspirowanych światem biologicznym. Ogólnym celem artykułu jest pokazanie, w jaki sposób wiedza dotycząca świata zwierzęcego inspiruje nowatorskie rozwiązania konstrukcyjne robotów przeznaczonych do zastosowań praktycznych.

Słowa kluczowe

biorobotyka, maszyny kroczące, maszyny sześcionożne, wzorce biologiczne

Bibliografia

  1. Bruneau O., Ben Oezdou F., Compliant contact of walking robot feet. Proceedings of the 3rd ECPD International Conference on Advanced Robotics, Intelligent Automation and Active Systems, 1997.
  2. Enoch A., Sutas A., Nakaoka S., Vijayakumar S., BLUE: A Bipedal Robot with Variable Stiffness and Damping, 12th IEEE-RAS Conference on Humanoid Robots, Japan 2012, DOI: 10.1109/HUMANOIDS.2012.6651564.
  3. de Alba A.G., Zielińska T., Postural equilibrium criteria concerning feet properties for biped robots. “Journal of Automation, Mobile Robotics and Intelligent Systems”. Vol. 6, No. 1, 2012, 35–40.
  4. Jung G.-P., Choi H.-C., Cho K.-J., The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism. “Bioinspiration and Biomimetics, Vol. 12, No. 2, 2017, DOI: 10.1088/1748-3190/aa575a.
  5. Hashimoto K., Takezaki Y., Hattori K., Kondo H., Takashima T., Lim H., Takanishi A., A Study of function of foot’s medial longitudinal arch using biped humanoid robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, 2206–2211, DOI: 10.1109/IROS.2010.5650414.
  6. Herman I.P., Physics of the Human Body. Springer 2016, DOI: 10.1007/978-3-319-23932-3.
  7. Hosoda K., Takuma T., Nakamoto A., Design and Control of 2D Biped that can Walk and Run with Pneumatic Artificial Muscles, 6th IEEE-RAS International Conference on Humanoid Robots, 2006, 284–289, DOI: 10.1109/ICHR.2006.321398.
  8. Li M., Jiang Z., Wang P., Sun L., Ge S.S., Control of a Quadruped Robot with Bionic Springy Legs in Trotting Gait. “Journal of Bionic Engineering”, Vol. 11, No. 2, 2014, 188–198, DOI: 10.1016/S1672-6529(14)60043-3.
  9. Meyer F., Sprowitz A., Lungarella M., Berthouze L., Simple and low-cost compliant leg-foot system. IEEE Inter national Conference on Intelligent Robots and Systems. 2004, Vol. 1, 515–520, DOI: 10.1109/IROS.2004.1389404.
  10. Morecki A., Zielińska T., Quadruped Walking Machine – Creation of the Model of Motion. Robots and Biological Systems: Towards a New Bionics. NATO ASI Series book series, Vol. 102, 1993, 207–222.
  11. Raibert M.H., Legged Robots that Balance. MIT Press, Cambridge, MA 1986.
  12. Seyfarth A., Lipfert S., Rummel J., Maus M., Maykranz D., Walking and Running: How Leg Compliance Shapes the Way We Move. [In:] Modeling, Simulation and Optimization of Bipedal Walking, “Cognitive Systems Monographs”. 2013, 211–222, DOI: 10.1007/978-3-642-36368-9_17.
  13. Luxman R., Zielińska T., Robot Motion Synthesis Using Ground Reaction Forces Pattern: Analysis of Walking Pos ture. “International Journal of Advanced Robotic Sys tems”, Vol. 14, 2017, DOI: /10.1177/1729881417720873.
  14. Sellaouti R., Stasse O., Kajita S., Yokoi K., Kheddar A., Faster and Smoother Walking of Humanoid HRP-2 with Passive Toe Joints. IEEE International Conference on Intelligent Robots and Systems, 2006, 4909–4914, DOI: 10.1109/IROS.2006.282449.
  15. Spröwitz A.J., Ajallooeian M., Tuleu A., Ijspeert A.J., Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. “Frontiers in Computational Neuroscience”. Vol. 8, 2014, DOI: 10.3389/fncom.2014.00027.
  16. Song S., LaMontagna Ch., Collins S., Geyer H., The Effect of Foot Compliance Encoded in the Windlass Mechanism on the Energetics of Human Walking. 35th International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 3179–3182, DOI: 10.1109/EMBC.2013.6610216.
  17. Szumowski M., Zielińska T., Preview Control Applied for Humanoid Robot Motion Generation, “Archives of Control Sciences”, Vol. 29(LXV), 2019, No. 1, 111–132, DOI: 10.24425/acs.2019.127526.
  18. Vukobratovic M., Borovac B., Zero-Moment Point – thirty five years of its life, “International Journal of Humanoid Robotics”, Vol. 1, No. 1, 2004, 157–173, DOI: 10.1142/S0219843604000083.
  19. Wilson D.M., Insect Walking. “Annual Review of Entomology”, Vol. 11, 1966, 103–122, DOI: 10.1146/annurev.en.11.010166.000535.
  20. Zielińska T., Heng J., Mechanical Design of Multifunctional Quadruped. “Mechanism and Machine Theory”, Vol. 38, No. 5, 2003, 463–478, DOI: 10.1016/S0094-114X(03)00004-1.
  21. Zielińska T., Biological Aspects of Walking. [In:] Walking: Biological and Technological Aspects. CISM Courses and Lectures. Pfeiffer F., Zielińska T. (eds), No. 467, 2004, 1–30, DOI: 10.1007/978-3-7091-2772-8.
  22. Zielińska T., Chew C.-M., Kryczka P., Jargilo T., Robot gait synthesis using the scheme of human motion skills development. “Mechanism and Machine Theory”, Vol. 44, No. 3, 2009, 541–558, DOI: 10.1016/j.mechmachtheory.2008.09.007.
  23. Zielińska T., Trojnacki M., Dynamical Approach to the Diagonal Gait Synthesis: Theory and Experiments, “Journal of Automation Mobile Robotics and Intelligent Systems”, Vol. 3, No. 2, 2009, 3–7.
  24. Zielińska T, Trojnacki M., Postural Stability in Symmetrical Gaits. “Acta of Bioengineering and Biomechanics”, Vol. 11, No. 2, 2009, 57–64.
  25. Zielińska T., Chmielniak A., Biologically Inspired Motion Synthesis Method of Two-Legged Robot with Compliant Feet, “Robotica”, Vol. 29, No. 7, 2011, 1049–1057, DOI: 10.1017/S0263574711000300.
  26. Zielińska T., On How Compliant Feet Support Postural Stability in Two Legged Locomotion. 2015 IFToMM World Congress, Vol. 1, 2015, 51–56.
  27. Zielińska T., Zimin L., Szumowski M., Ge W., Motion Planning for a Humanoid Robot with Task Dependent Constraints. [In:] Advances in Mechanism and Machine Science. IFToMM World Congress 2019, “Mechanisms and Machine Science”, Vol. 73, 2019, 1681–1690, DOI: 10.1007/978-3-030-20131-9_166.
  28. Żurawska M.S., Zielińska T., Szumowski M., The Role of Compliant Elements in Two-Legged Robot’s Foot Model. “Journal of Automation, Mobile Robotics and Intelligent Systems”, Vol. 9, No. 1, 2015, 68–76, DOI: 10.14313/JAMRIS_1-2015/9.
  29. Zieliński C., General Robotic System Software Design Methodology. [In:] Advances in Mechanism and Machine Science. IFToMM World Congress 2019, “Mechanisms and Machine Science”, Vol. 73, 2019, 2779–2788, DOI: 10.1007/978-3-030-20131-9_275.
  30. Figat M., Zieliński C., Methodology of Designing Multi agent Robot Control Systems Utilizing Hierarchical Petri Nets. 2019 IEEE International Conference on Robotics and Automation, 2019, 3363–3370, DOI: 10.1109/ICRA.2019.8794201.
  31. Almubarak Y., Punnoose M., Maly N.X., Hamidi A., Tadesse Y., KryptoJelly: A Jellyfish Robot with Confined, Adjustable Pre-stress, and Easily Replaceable Shape Memory Alloy NiTi Actuators. “Smart Materials and Structures”. Vol. 29, No. 7, 2020, DOI: 10.1088/1361-665X/ab859d.
  32. Renda F., Giorgio-Serchi F., Boyer F., Laschi C., Dias J., Seneviratne L., Unified Multi-soft-body Dynamic Model for Underwater Soft Robots. “The International Journal of Robotics Research”, Vol. 37, No. 6, 2018, DOI: 10.1177/0278364918769992.
  33. Wang S., He L., Maiolino P., A Modular Approach to Design Multi-Channel Bistable Valves for Integrated Pneumatically-Driven Soft Robots via 3D-printing, “IEEE Robotics and Automation Letters”, Vol. 7, No. 2, 2022, 3412–3418, DOI: 10.1109/LRA.2022.3147898.
  34. Mazzolai B., Mondini A., Del Dottore E.. , Margheri L., Carpi F., Suzumori K., Cianchetti M., Speck T., Smoukov S.K., Burgert I., Keplinger T., De Freitas Siqueira G., Vanneste F., Goury O., Duriez Ch., NanayakkaraT., Vanderborght B., Brancart J., Terryn S., Rich S.I, Liu R., Fukuda K., Someya T., Calisti M., Laschi C., Sun W., Wang G., Wen L., Baines R., Patiballa S.K., Kramer-Bottiglio R., Rus D., Fischer P., Simmel F.C., Lendlein A., Roadmap on Soft Robotics: Multifunctionality, Adaptability and Growth Without Borders. “Multifunctional Materials”, Vol. 5, No. 3, 2022, DOI: 10.1088/2399-7532/ac4c95.
  35. Zielińska T., Control and Navigation Aspects of a Group of Walking Robots. “Robotica”, Vol. 24, No. 1, 2006, 23–29, DOI: 10.1017/S0263574705001840.
  36. Zieliński C., Robotic System Design Methodology Utilising Embodied Agents. [In:] Automatic Control, Robotics and Information Processing, Eds.: P. Kulczycki, J. Korbicz, J. Kacprzyk. Series: Advances in Intelligent Systems and Computing, Vol. 296, 2021, 523–561, DOI: 10.1007/978-3-030-48587-0_17.
  37. http://www.iftomm-terminology.antonkb.nl/