Biosensory mikrobiologiczne bazujące na zjawisku luminescencji

pol Artykuł w języku polskim DOI: 10.14313/PAR_224/79

wyślij Aleksandra Kłos-Witkowska Akademia Techniczno-Humanistyczna w Bielsku-Białej, Wydział Budowy Maszyn i Informatyki

Pobierz Artykuł

Streszczenie

W prezentowanej pracy została przedstawiona charakterystyka biosensorów luminescencyjnych, pokazano ich miejsce w całej rodzinie biosensorów. Opisano rolę mikroorganizmów w biosensorach opartych na luminescencji. Przedstawiono mechanizm luminescencji w bakteriach oraz przykłady genetycznie zmienionych mikroorganizmów i ich zastosowanie jako mikrobiologicznych biosensorów opartych na luminescencji. Zaprezentowano zastosowanie mikrobiologicznych biosensorów luminescencyjnych w ochronie środowiska, przemyśle spożywczym, przemyśle obronnym i medycynie, a także pokazano przykłady komercyjnie dostępnych czujników mikrobiologicznych z uwzględnieniem tych bazujących na zjawisku luminescencji.

Słowa kluczowe

analit, biosensor, detekcja, luminescencja, mikroorganizm

Microbiological Biosensors Based on Luminescence

Abstract

In this paper microbiological biosensors based on luminescence were presented, showing their place in the whole family of biosensors. The role of microorganisms in biosensors based on luminescence have been described. The mechanism of luminescence in bacteria and examples of genetically engineered microorganisms, their use as a microbial biosensors based on luminescence has been shown. The use of microbiological luminescent biosensors in: environmental protection, food industry, defense industry and medicine, as well as examples of commercially available microbiological sensors including those based on luminescence phenomenon have been shown. In reviewing the literature, there are numerous work-related microbiological biosensors, but not found among them the manuscript which present selected information on the microbial biosensors based on luminescence phenomenon. Novelty of this study is to provide the selected information on the microbial biosensors based on luminescence and the presentation of their latest applications.

Keywords

biosensor, detection, luminescence

Bibliografia

  1. Vigneshvar S., Sudhakumari C.C., Senthilkumaran B., Prakash H., Recent Advances in Biosensor Technology for Potential Applications – An Overview. “Frontiers in Bioengineering Biotechnology”, Vol. 4, 2016, DOI: 10.3389/fbioe.2016.00011.
  2. Kłos-Witkowska A., Fluorescent biosensor based on enzyme for environmental, clinical and industry applications. “Polish Journal of Environmental Studies”, Vol. 24, 2015, 19–25, DOI: 10.15244/pjoes/28352.
  3. Koedrith P., Thasiphu T., Weon J., Boonprasert R., Tuitemwong K., Tuitemwong P., Recent Trends in Rapid Environmental Monitoring of Pathogens and Toxicants: Potential of Nanoparticle-Based Biosensor and Applications. “The Scientific World Journal”, 2015, 1–12, DOI: 10.1155/2015/510982.
  4. Kłos-Witkowska A., The phenomenon of fluorescence in immunosensors. “Acta Biochimica Polonica”, Vol. 63, 2016, 215–221, DOI: 10.18388/abp.2015_1231.
  5. Justino C., Rocha-Santos., Duarte A., Review of analytical figures of merit of sensors and biosensors in clinical application. “Trends in Analytical Chemistry”, 29(10), 2010, 1172–1183.
  6. Patel S., NandaR., Sahoo S., Mohapatra E., Biosensors in Health Care The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis. “Biochemistry Research International”. Article ID 3130469, 2016, DOI: 10.1155/2016/3130469.
  7. Korotkaya E., Biosensors: design, classification and applications in food industry. “Foods and Raw Materiale”, Vol. 2 (2), 2014, 161–171.
  8. Luong J., Bauvrette P., Male K., Developments and applications of biosensors in food analysis. Trends in Biotechnology, 15 (9),1997, 369–377.
  9. Adley C.C., Past, Present and Future of Sensors in Food Production. “Foods”, Vol. 3, 2014, 491–510, DOI: 10.3390/foods303049128.
  10. Thevenot D., Toth K., Dust R., Electrochemical biosensors: recommended definitions and classification (Technical Report), “Pure and Applied Chemistry”, Vol. 12, 1999, 2333–2348.
  11. Kłos-Witkowska A., Ewolucja i rozwój biosensorów – problemy i perspektywy. „Pomiary Automatyka Kontrola”, Nr 12, 2014, 1178–1180.
  12. Matejczyk M., Potencjał aplikacyjny biosensorów mikrobiologicznych. „Postępy Mikrobiologii”, Vol. 49 (4), 2010, 297–304.
  13. Thakur M., Raqgawan K., Biosensors in food processing. “Journal of Food Science and Technology”, Vol. 50(4), 2013, 625–641, DOI: 10.1007/s13197-012-0783-z.
  14. Błaszyk M., Miroorganizmy w ochronie środowiska. Wydawnictwo Naukowe PWN, Warszawa 2007.
  15. Pogorzelec M., Piekarska K., Wykorzystanie bakterii bioluminescencyjnych do wykrywania substancji toksycznych i mutagennych w środowisku. Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. Wrocław 2013, Tom 3, 524–528.
  16. Turdean G.L., Design and Development of Biosensors for the Detection of HeavyMetal Toxicity. „International Journal of Electrochemistry”, Article ID 343125, 2011, DOI: 10.4061/2011/343125.
  17. Marincs F., On-line monitoring of growth of Escherichia coli in batch cultures by bioluminescence. “Applied Microbiology and Biotechnology”, Vol. 53(5), 2000, 536–541, DOI: 10.1007/s002530051653.
  18. Souza S.F., Microbial biosensors. “Biosensors & Bioelectronics”, Vol. 16 (6), 2001, 337–353.
  19. Trögl J., Chauhan A., Ripp S., Layton A.C., Kuncová G., Sayler G.S., Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History. “Sensors”, Vol. 12(2), 2012, 1544–1571, DOI: 10.3390/s120201544.
  20. Applegate B.M., Kehrmeyer S.R., Sayler G.S., A Chromosomally Based tod-luxCDABE Whole-Cell Reporter for Benzene, Toluene, Ethybenzene, and Xylene (BTEX) Sensing. “Applied and Environmental Microbiology”, Vol. 64(7), 1998, 2730–2735.
  21. Robinson G.M., Tonks K.M., Thorn R.M., Reynolds D.M., Application of Bacterial Bioluminescence To Assess the Efficacy of Fast-Acting Biocides. “Antimicrobial Agents and Chemotherapy”, Vol. 55(11), 2011, 5214–5219, DOI: 10.1128/AAC.00489-11.
  22. Shao C.Y., Howe C.J., Porter A.J.R., Glover L.A., Novel Cyanobacterial Biosensor for Detection of Herbicides. “Applied and Enviromental Microbilogy”, Vol. 68, 2002, 5026–5033. DOI: 10.1128/AEM.68.10.5026–5033.2002.
  23. Solovyev A.I., Kostein M., Kuncowa G., Dostalek P., Rohovec J., Navratil T., Preconcentration and detection of mercury with bioluminescent bioreporter E. coli ARL1. “Applied Microbiology and Biotechnology”, Vol. 99(20), 2015, 8793-8802, DOI: 10,1007/s00253-015-6747-2.
  24. Horsburgh A.M., Mardlin D.P., Turner N.L., Henkler R., Strachan N., Glover L.A., Paton G.I., Killham K., On-line microbial biosensing and fingerprinting of water pollutants. “Biosensors & Bioelectronics”, Vol. 17, 2002, 495–501, DOI: 10.1016/S0956-5663(01)00321-9.
  25. Ramiz D., Ronen A., Amit R., Belkinb S., Diamandc Y.S., Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode. “Biosensors & Bioelectronics”, Vol. 24, 2008, 888–893, DOI: 10.1016/j.bios.2008.07.026.
  26. Cai J., DuBow M.S., Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). “Biodegradation”, Vol. 8 (2), 1997, 105–111.
  27. Alloush H.M., Lewis R.J., Salisbury V.C., Bacterial Bioluminescent Biosensors: Applications in Food and Environmental Monitoring. “Analytical Letters”, Vol. 39, 2006, DOI: 10.1080/00032710600713172.
  28. Hollis R.P., Kilham K., Glover L.A., Design and Application of a Biosensor for Monitoring Toxicity of Compounds to Eukaryotes. “Applied and Environmental Microbiology”, Vol. 66(4), 2000, 1676–1679.
  29. Habib M., Anderson A.E, Martin A.D., Ruddock M.W., Angell J.E., Hill P.J., Mehta P., Smith M.A., Smith J.G., Salisbury V.C., A Bioluminescent Microbial Biosensor for In Vitro Pretreatment Assessment of Cytarabine Efficacy in Leukemia. “Clinical Chemistry”, Vol. 56(12), 2010, 1862–1870.
  30. Miller S.E., Teplensky M.H., Moghadam P.Z., Fairen-Jimenez D., Metal-organic frameworks as biosensors for luminescence-based detection and imaging. “Interface Focus”, Vol. 6, 2016, DOI: 10.1098/rsfs.2016.0027.
  31. Taylor K.M.L., Lin W., Hybrid silica nanoparticles for luminescent spore detection. “Journal of Materials Chemistry”, Vol. 19, 2009, 6418–6422, DOI: 10.1039/B900866G.
  32. Jouaneau S., Durand-Thouand M.A., Thouand G., Design of toxicity biosensor based on Allivibrio fischeri entrapped in disposable card. “Enviromental Science and Polution Research”, Vol. 23(5), 2016, 4340–4345, DOI: 10.1007/s11256-015-4942-4.
  33. Jolibois B., Guerbet M., Vassal S., Detection of hospital wastewater genotoxicity with the SOS Chromotest and Ames fluctuation test. “Chemosphere”, Vol. 51(6), 2003, 539–543.
  34. Canna-Michaelidou S., Nicolaou A., Evaluation of the genotoxicity potential (by Mutatox(TM) test) of ten pesticides found as water pollutants in Cyprus. “Science of the Total Environment”, Vol. 193 (1), 1997, 27–35.
  35. http://www.modernwater.com
  36. http://www.gentaur.com/toxi-vibrotox.htm
  37. http://www.ebpi.ca
  38. http://www.gentronix.co.uk
  39. Podgórska B., Węgrzyn G., A modified Vibrio harveyi mutagenicity assay based on bioluminescence induction. “Letters in Applied Microbiology”, Vol. 42 (6), 2006, 578–582.
  40. http://www.zbs.wum.edu.pl