Application of constraint logic programming to decision support for the supply chain management

eng Artykuł w języku angielskim DOI:

wyślij Paweł Sitek Politechnika Świętokrzyska w Kielcach; Wydział Elektrotechniki, Automatyki i Informatyki

Pobierz Artykuł

Abstract

Decyzje w zarządzaniu łańcuchem dostaw mogą być rozpatrywane na różnych poziomach szczegółowości. Na poziomie strategicznym dotyczą samej struktury i architektury łańcucha, na poziomie taktycznym wyboru floty transportowej, a na poziomie operacyjnym wyboru tras dostaw itd. Opracowano wiele formalnych modeli zarządzania łańcuchem dostaw. Najczęściej były to modele programowania matematycznego liniowego (LP) oraz całkowitoliczbowego (MILP). Chociaż posiadały struktury dobrze rozumiane w środowiskach (OR-Badań Operacyjnych), posiadały istotne wady. Po pierwsze, mogły zawierać jedynie ograniczenia liniowe. Po drugie nie były efektywne przy większych rozmiarach problemów decyzyjnych. W Artykule zaproponowano model decyzyjny dla łańcucha dostaw oparty na problemie spełnienia ograniczeń (CSP-based) oraz jego implementacji w środowisku programowania w logice z ograniczeniami (CLP). Dodatkowo zaprezentowano nowatorski sposób propagacji ograniczeń wykorzystujący strukturę problemu.

Keywords

Constraint Logic Programming, Constraint Satisfaction Problem, Decision Support, hybrid modeling, Supply Chain Management

Zastosowanie programowania w logice z ograniczeniami do wspomagania decyzji zarządzania łańcuchem dostaw

Streszczenie

Supply Chain Management (SCM) decisions can be considered at different levels of detail. At a strategic level they apply to the architecture in the supply chain, at the tactical level to transport fleet selection, selection of supply sources and distribution, and at the operational level, to the distribution of supplies and route selection. Many models of decision-making SCM have been developed. These are the linear (LP-linear programming) or mixed (MIP/MILP-Mixed Integer/Linear Integer Programming) models. These models are equipped with a smart form. Although they are well known in the OR (Operation Research) environment, they have significant drawbacks. First of all, they must support only linear constraints. For problems of larger dimensions search for solutions is long and inefficient. This paper proposes a CSP-based decision model for SCM and its implementation in the CLP (Constraint Logic Programming). In addition, it presents a novel way of constraints propagation using the structure of the problem.

Słowa kluczowe

modelowanie hybrydowe, programowanie w logice z ograniczeniami, wspomaganie decyzji, zarządzanie łańcuchem dostaw

Bibliografia

  1. Apt K., Wallace M., Constraint Logic Programming using Eclipse, Cambridge University Press, 2006.
  2. Williams, H.P., Logic and Integer Programming. Springer, Berlin 2009.
  3. Huang, G.Q., Lau, J.S.K., Mak, K.L., The impacts of sharing production information on supply chain dynamics: a review of the literature, “International Journal of Production Research” 41, 2003, 1483-1517.
  4. Beamon, B.M., Chen, V.C.P., Performance analysis of conjoined supply chains, “International Journal of Production Research” 39, 2001, 3195-3218.
  5. Kanyalkar, A.P., Adil, G.K., An integrated aggregate and detailed planning in a multi-site production environment using linear programming, “International Journal of Production Research” 43, 2005, 4431-4454.
  6. Perea-lopez, E., Ydstie, B.E., Grossmann, I.E., A model predictive control strategy for supply chain optimization, “Computers and Chemical Engineering” 27, 2003, 1201-1218.
  7. Park, Y.B., An integrated approach for production and distribution planning in supply chain management, “International Journal of Production Research” 43, 2005, 1205-1224.
  8. Jung, H., Jeong, B., Lee, C.G., An order quantity negotiation model for distributor-driven supply chains, “International Journal of Production Economics” 111, 2008, 147-158.
  9. Rizk, N., Martel, A., D’amours, S., Multi-item dynamic production-distribution planning in process industries with divergent finishing stages, “Computers and Operations Research” 33, 2006, 3600-3623.
  10. Selim, H., Am, C., Ozkarahan, I., Collaborative production-distribution planning in supply chain: a fuzzy goal programming approach, “Transportation Research Part E-Logistics and Transportation Review” 44, 2008, 396-419.
  11. Lee, Y.H., Kim, S.H., Optimal production-distribution planning in supply chain management using a hybrid simulation-analytic approach, Proceedings of the 2000 Winter Simulation Conference 1 and 2, 2000, 1252-1259.
  12. Chern, C.C., Hsieh, J.S., A heuristic algorithm for master planning that satisfies multiple objectives, “Computers and Operations Research” 34, 2007, 3491-3513.
  13. Jang, Y.J., Jang, S.Y., Chang, B.M., Park, J., A combined model of network design and production/distribution planning for a supply network, “Computers and Industrial Engineering” 43, 2002, 263-281.
  14. Timpe, C.H., Kallrath, J., Optimal planning in large multi-site production networks, “European Journal of Operational Research” 126, 2000, 422-435.
  15. Sitek P., Wikarek J., Cost optimization of supply chain with multimodal transport, [in:] Proceedings of the Federated Conference on Computer Science and Information Systems, 2012, 1111-1118.
  16. Schrijver, A., Theory of Linear and Integer Programming, ISBN 0-471-98232-6, John Wiley & Sons. 1998.
  17. [www.eclipseclp.org] - EclipseHome (22.11.2012).
  18. Wikarek J., Implementation of decision support model of supply chain management in the environment of constraint logic programming, “Pomiary Automatyka Robotyka”, 2/2013.