Modelowanie oraz sterowanie temperaturą wewnątrz budynku użyteczności publicznej
Streszczenie
Pomieszczenia w budynkach użyteczności publicznej charakteryzują się występującymi naprzemiennie okresami wykorzystywania oraz niewykorzystywania tych pomieszczeń, wynikającymi z godzin nocnych oraz przeplatania się dni roboczych oraz wolnych od pracy. W artykule przedstawiono pomiary zużycia energii cieplnej w wybranym pomieszczeniu biurowym oraz utworzono termiczny model matematyczny pomieszczenia ogrzewanego instalacją centralnego ogrzewania. Opisano zależności mocy cieplnej pobieranej przez pomieszczenie w funkcji temperatury wewnętrznej i zewnętrznej dla stanu ustalonego oraz w postaci dwuczłonowej transmitancji opisującej zależność temperatury wewnętrznej od temperatury zewnętrznej i mocy kaloryfera. Zaproponowano algorytm sterowania grzejnikiem zapewniający utrzymanie komfortu termicznego w pomieszczeniu w godzinach pracy przy jednoczesnym oszczędzaniu energii w okresach, gdy w pomieszczeniu nie pracują ludzie. Oszczędzanie energii odbywa się przez obniżenie temperatury w pomieszczeniu. Przywracanie komfortu termicznego wykorzystuje matematyczny model pomieszczenia, dzięki któremu można symulacyjnie obliczyć godzinę powtórnego włączenia ogrzewania w celu odzyskania temperatury komfortu termicznego na zadaną godzinę. Bazując na opracowanych modelach opisano metodę szacowania uzyskanych oszczędności wynikających z obniżania temperatury wewnątrz pomieszczenia w okresach, w których nie przebywają w nim ludzie. Oszczędności obliczane są jako różnica energii dostarczonej do pokoju w hipotetycznej, obliczonej na podstawie modelu matematycznego pomieszczenia, sytuacji braku obniżania temperatury oraz rzeczywistej, zmierzonej energii dostarczonej do pokoju. Uzyskane w sezonie grzewczym 2023/2024 wyniki wskazują możliwość oszczędności energii cieplnej na poziomie 20–30 %.
Słowa kluczowe
identyfikacja, modelowanie pomieszczeń, MPC, oszczędzanie energii cieplnej, sterowanie optymalne
Modeling and Control the Temperature Inside a Public Building
Abstract
Rooms in public buildings are characterized by alternating periods of use and non-use of these rooms, resulting from the limited number of working periods and the alternation of working and non-working days. The article presents measurements of thermal energy consumption in a selected office room and creates a thermal mathematical model of a room heated by a central heating. The dependences of the heat power consumed by the room as a function of the internal and external temperature for a steady state are given. Also a two-part transfer function describing the relation of the indoor temperature on the outdoor temperature and the radiator power is described. A radiator control algorithm was proposed to ensure thermal comfort in the room during working hours while saving energy during periods when no people are present in the room. Energy is saved by lowering the room temperature. Restoring thermal comfort uses a mathematical model of the room, thanks to which it is possible to estimate in simulation the hour of turning the heating on again in order to regain the thermal comfort temperature for a given hour. Based on the developed models, a method was developed and described for estimating the savings resulting from lowering the temperature inside the room during periods when no people are present in it. Savings are calculated as the difference between the energy supplied to the room in a hypothetical situation of no temperature reduction, calculated on the basis of a mathematical model of the room, and the actual, measured energy supplied to the room. The results obtained in the 2023/2024 heating season indicate the possibility of achieving from 20 % to 30 % thermal energy savings.
Keywords
identification, MPC, optimal control, room modeling, thermal energy saving
Bibliography
- Jakob M., Heat Transfer, John Willey & Sons, 1949.
- Lienhard J.H., Lienhard J.H., A heat transfer textbook, 4th ed., Dover Publications, 2011.
- Poulikakos D., Conduction heat transfer, Prentice Hall, 1994.
- Skruch P., A Thermal Model of the Building for the Design of Temperature Control Algorithms. „Automatyka/Automatics”, Vol. 18, No. 1, 2014, 9–21, DOI: 10.7494/automat.2014.18.1.9.
- Sedov A., Ainagulova A., Temirgaliyeva A., Mathematical model of heat supply of rooms for Automated control systems of energy saving, 2015, DOI: 10.2991/icmra-15.2015.206.
- Lei L., Shaodan H., A mathematical model of the room temperature dynamic response in multi-zone buildings, “E3S Web of Conferences”, Vol. 356, 2022, DOI: 10.1051/e3sconf/202235603034.
- Pandey K., Basu B., Mathematical Modeling for Short Term Indoor Room Temperature Forecasting Using Box-Jenkins Models: An Indian Evidence, “Journal of Modelling in Management”, Vol. 15, No. 3, 2020, 1105–1136. DOI: 10.1108/JM2-08-2019-0182.
- Hietaharju P., Ruusunen M., Leiviskä K., A Dynamic Model for Indoor Temperature Prediction in Buildings, “Energies”, Vol. 11, No. 6, 2018, DOI: 10.3390/en11061477.
- Tao H., Junjie L., Yu S., Yongjian C., Zhenyu L., Predictive analysis of indoor temperature and humidity based on BP neural network single-step prediction method, 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), IEEE, 2020, 402–407, DOI: 10.1109/ICISCAE51034.2020.9236853.
- Li Q., Research on Energy Saving Control of Building Central Air Conditioning Based on Neural Network, 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS), IEEE, 2022, 59–62, DOI: 10.1109/MLCSS57186.2022.00019.
- Elmaz F., Ghane S., Huybrechts T., Anwar A., Mercelis S., Hellinckx P., Transfer Learning-based Hybrid Modeling Approach for Indoor Temperature Modeling, IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2022, DOI: 10.1109/IECON49645.2022.9968939.
- Palaić D., Matetić I., Ljubić S., Štajduhar I., Wolf I., Data-driven Model for Indoor Temperature Prediction in HVAC-Supported Buildings, 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), IEEE, 2023, DOI: 10.1109/ICECCME57830.2023.10252601.
- Song J., Xue G., Ma Y., Li H., Pan Y., Hao Z., An Indoor Temperature Prediction Framework Based on Hierarchical Attention Gated Recurrent Unit Model for Energy Efficient Buildings, “IEEE Access”, Vol. 7, 2019, 157268–157283, DOI: 10.1109/ACCESS.2019.2950341.
- Zhuang J., Chen X., Chen Y., Dynamic modeling of indoor air temperature based on power spectral density method. 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), IEEE, 2017, 711–715. DOI: 10.1109/CCSSE.2017.8088026.
- Grega W., Kołek K., Monitoring and Control of Heat Distribution, International Carpathian Control Conference ICCC’2002, Malenowice, Czech Republic, 2002, 439–444.
- Grega W., Kołek K., Bania P., Optymalne sterowanie węzłem cieplnym, XIV Krajowa Konferencja Automatyki, Zielona Góra, 2002, 997–1002.
- Yu H., Ma C., Liu Z., An Energy-Saving Control Model and Strategy Based on Divided Areas for Intelligent Building, 2015, DOI: 10.2991/iccse-15.2015.93.
- Mei J., Zhu B., Xia X., Model predictive control for optimizing indoor air temperature and humidity in a direct expansion air conditioning system, The 27th Chinese Control and Decision Conference (2015 CCDC), IEEE, 2015, 2491– 2496, DOI: 10.1109/CCDC.2015.7162340.
- Ibrahim M.F., Mohamed M., Far B.H., Measuring the effectiveness of zonal heating control for energy saving, IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2016, 000132–000136, DOI: 10.1109/SMC.2016.7844231.
- Sönmez D., Kivanç D., A review of modern residential thermostats for home automation to provide energy efficiency, 4th International Istanbul Smart Grid Congress and Fair (ICSG), IEEE, 2016, DOI: 10.1109/SGCF.2016.7492430.
- Hazyuk I., Ghiaus C., Penhouet D., Optimal temperature control of intermittently heated buildings using model predictive control: Part II – control algorithm, “Building and DOI: 10.1016/j.buildenv.2011.11.008.