Analiza pełzania w przetwornikach momentu siły dla turbin wiatrowych
Streszczenie
Kluczową kwestią przy analizie efektywności turbin wiatrowych jest zjawisko pełzania momentu siły zarówno pod obciążeniem, jak i bez obciążenia. Zjawisko to ma istotny wpływ na poprawne działanie przetworników momentu siły, dlatego wymaga zastosowania odpowiednich algorytmów do analizy danych pomiarowych. Metoda najmniejszych kwadratów jest odpowiednia do takiej analizy. Zastosowano regresję liniową do zbadania samego trendu pełzania, a nieliniowa krzywa wielomianowa trzeciego stopnia pozwoliła na jego wizualizację.
Słowa kluczowe
analiza danych, badanie pełzania, metoda najmniejszych kwadratów, niepewność pomiaru, przetwornik momentu siły, regresja
Analysis of Creep in Torque Transducers for Wind Turbine
Abstract
A crucial aspect to consider when assessing the effectiveness of wind turbines is the phenomenon of torque creep, both under load and without load. This phenomenon significantly affects the proper functioning of torque transducers, thus necessitating the utilization of suitable algorithms for analysing measurement data. The least squares method is well-suited for this type of analysis. Linear regression was employed to study the creep trend, while a third-degree non-linear polynomial curve enabled a more precise visualization of creep, yielding valuable insights.
Keywords
analysis, creep study, least square method, measurement uncertainty, regression, torque transducer
Bibliography
- Bruge A., Creep measurements in reference torque calibration machines. Proceedings of the IMEKO 2010: TC3, TC5 and TC22 Conferences, Pattaya, Thailand, 22–25 Novem ber 2010.
- Woźniak M., Röske D., Investigation of the calibration and measurement capabilities of the new 5 kN·m torque calibration machine at GUM. Proceedings of the XXI IMEKO World Congress, Measurement in Research and Industry, Prague, Czech Republic, 30 August–4 September 2015.
- Fidelus J., Cybul K., Study on short-term creep effect and hysteresis for the HMB Z4A force transducer under compressive andtensile forces, “Acta IMECO”, Vol. 9, No. 5, 2020, 137–142, DOI: 10.21014/acta_imeko.v9i5.956.
- Fidelus J., Puchalski J.,Trych-Wildner A., Weidinger P., The creep behavior of a 2 kN m torque transducer tested at GUM and PTB. Proceedings of the 2023 14th International Conference on Measurement, Smolenice, Slovakia, 29–31 May 2023, DOI: 10.23919/MEASUREMENT59122.2023.10164420.
- Martinez M., Reigosa D., Fernandez D., Briz F., Comparative Analysis of High Frequency Signal Injection Based Torque Estimation Methods for SPMSM, IPMSM and SynRM. “Energies”, Vol. 13, No. 3, 2020, DOI: 10.3390/en13030592.
- Khaled K.M., Roske D., Abuelezz A.E., El-Sherbiny M.G., The influence of temperature and humidity on the sensitivity of torque transducers. “Measurement”, Vol. 94, 2016, 186–200, DOI: 10.1016/j.measurement.2016.07.028.
- Sander J., Kumme R., Tegtmeier F.L., Creep Correction Method for Force Applications, IMEKO 2022: TC3, 14th TC5, 6th TC16 and 5th TC22 International Conference, Cavtat-Dubrovnik, Croatia. DOI: 10.21014/tc3-2022.082.
- Fidelus J.D., Puchalski J.G., Trych-Wildner A., Urbański M., Weidinger P., Estimation of Uncertainty for the Torque Transducer in MNm Range – Classical Approach and Fuzzy Sets. “Energies”, Vol. 16, No. 16, 2023, DOI: 10.3390/en16166064.
- Fotowicz P., Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych. „Pomiary Automatyka Robotyka“, R. 8, Nr 1, 2005, 5–9.
- Allan D., Hellwig H., Kartaschoff P., Vanier J., Vig J., Winkler G.M., Yannoni N.F., Standard Terminology for Fundamental Frequency and Time Metrology. Proceedings of the 42nd Annual Frequency Control Symposium, Baltimore, MD, USA, 1–3 June 1988, 419–425, DOI: 10.1109/FREQ.1988.27634.
- Dennis J.E., Schnabel R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM 1996 reproduction of Prentice-Hall, SIAM: Philadelphia, PA, USA 1983, DOI: 10.1137/1.9781611971200.
- Fletcher R., Practical Methods of Optimization. 2nd ed., John Wiley and Sons: New York, NY, USA 1987, DOI: 10.1002/9781118723203.
- Levenberg K.A., A Method for the Solution of Certain Non-Linear Problems in Least Squares. “Quarterly of Applied Mathematics”, Vol. 2, 1944, 164–168, DOI: 10.1090/qam/10666.
- Marquardt D., An Algorithm for Least-Squares Estimation of Nonlinear Parameters. “Journal of the Societyfor Industrial and Applied Mathematics”, Vol. 11, No. 2, 1963, 431–441.
- Kanzow C.H., Yamashita N., Fukushima M., Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. “Journal of Computational and Applied Mathematics”, Vol. 172, No. 2, 2004, 375–397, DOI: 10.1016/j.cam.2004.02.013.
- Teunissen P., Applications of Linear and Nonlinear Models: Fixed Effects, Random Effects, and Total Least Squares. “Journal of Spatial Science”, Vol. 58, No. 2, 2013, 339–340, DOI: 10.1080/14498596.2013.815147.
- Puchalski J.G., A new algorithm for generalization of least square method for straight line regression in Cartesian system for fully-correlated both coordinates. “International Journal of Automation, Artificial Intelligence and Machine Learning”, Vol. 2, No. 2, 2021, 20–54, DOI: 10.61797/ijaaiml.v2i2.98.
- Puchalski J., Warsza Z.L., Matching The Parabolic Curve to Both Correlated Coordinates of Tested Points by the Linear Regression Method. Paris MathMet 2022, EMN Conference Presentations, [www.lne.fr/system/files/pdf/MATHMET-2022-Presentations-Thursday-3-November.zip].
- Reed B.C., Linear leastsquares fits with errors in both coordinates. II: Comments on parameter variances. “American Journal of Physics”, Vol. 60, No. 1, 1992, 59–62, DOI: 10.1119/1.17044.
- Puchalski J.G., Fidelus J.D., Fotowicz P., Algorithms Utilized for Creep Analysis in Torque Transducers for Wind Turbines. “Algorithms”, Vol. 17, No. 2, 2024, DOI: 10.3390/a17020077.