Simulation of simple movements of Arm-Z oblique swivel joint chain manipulator

eng Article in English DOI: 10.14313/PAR_248/59

Ela Zawidzka , send Machi Zawidzki Institute of Fundamental Technological Research, Polish Academy of Sciences, Adolfa Pawińskiego 5B, 02-106 Warsaw

Download Article

Abstract

Arm-Z is a concept of a hyper-redundant manipulator based on linearly joined sequence of congruent modules by oblique swivel joint mechanism. Each module has one degree of freedom only, namely a twist relative to the previous module in the sequence. Although the concept of this type of manipulator is relatively old and simple, its control is very difficult an nonintuitive, which results in a limited use in industrial practice. This paper presents a simple simulation of Arm-Z in Mathematica programming environment which demonstrates a few simple but potentially useful movements.

Keywords

Arm-Z, Extremely Modular System, hyper-redundant manipulator, Mathematica, oblique swivel joint

Symulacja prostych ruchów Arm-Z manipulatora łańcuchowego o skośnych przegubach obrotowych

Streszczenie

Arm-Z to koncepcja hiperredundantnego manipulatora opartego na liniowo połączonej sekwencji przystających modułów za pomocą skośnych przegubów obrotowych. Każdy moduł posiada tylko jeden stopień swobody, mianowicie skręt względem poprzedniego modułu. Mimo że koncepcja tego typu manipulatora jest stosunkowo stara i prosta, jego sterowanie jest bardzo trudne i nieintuicyjne, co powoduje ograniczone zastosowanie w praktyce przemysłowej. W niniejszej pracy przedstawiono prostą symulację Arm-Z w środowisku programistycznym Mathematica, która demonstruje kilka prostych, ale potencjalnie użytecznych ruchów.

Słowa kluczowe

Arm-Z, manipulator hiperredundantny, Mathematica, skośny przegub obrotowy, system ekstremalnie modularny

Bibliography

  1. Gray J., The mechanism of locomotion in snakes. „Journal of Experimental Biology”, Vol. 23, No. 2, 1946, 101–120, DOI: 10.1242/jeb.23.2.101.
  2. Hirose S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, 1993.
  3. Lafmejani A.S., Doroudchi A., Farivarnejad H., He X., Aukes D., Peet M.M., Marvi H., Fisher R.E., Berman S., Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot. „IEEE Robotics and Automation Letters”, Vol. 5, No. 2, 2020, 3460–3467, DOI: 10.1109/LRA.2020.2976328.
  4. Auke Jan Ijspeert and Alessandro Crespi. Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. [In:] Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007), 262–268. DOI: 10.1109/ROBOT.2007.363797.
  5. Chirikjian G.S., Burdick J.W., Design, implementation, and experiments with a thirty-degree-of-freedom ”hyper-redundant” robot. ISRAM 1992.
  6. Klaassen B., Paap K.L., GMD-SNAKE2: a snake-like robot driven by wheels and a method for motion control. [In:] Proceedings 1999 IEEE International Conference on Robotics and Automation, Vol. 4, 1999, 3014–3019, IEEE, DOI: 10.1109/ROBOT.1999.774055.
  7. Miller G., Snake robots for search and rescue, neurotechnology for biomimetic robots. [In:] Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2002), 16–21.
  8. Choi H.R., Ryew S.M., Robotic system with active steering capability for internal inspection of urban gas pipelines. „Mechatronics”, Vol. 12, No. 5, 2002, 713–736, DOI: 10.1016/S0957-4158(01)00022-8.
  9. Tsakiris D.P., Sfakiotakis M., Menciassi A., La Spina G., Dario P., Polychaete-like undulatory robotic locomotion. [In:] Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 3018–3023, IEEE, DOI: 10.1109/ROBOT.2005.1570573.
  10. Melsaac K.A., Ostrowski J.P., A geometric approach to anguilliform locomotion: modelling of an underwater eel robot. [In:] Proceedings 1999 IEEE International Conference on Robotics and Automation, Vol. 4, 1999, 2843– 2848. IEEE, DOI: 10.1109/ROBOT.1999.774028.
  11. Wilbur C., Vorus W., Cao Y., 14: a Lamprey-Based Undulatory Vehicle. „Neurotechnology for biomimetic robots”, 2002, DOI: 10.7551/mitpress/4962.003.0024.
  12. Yamada H., Development of amphibious snake-like robot ACM-R5. 36th International Symposium on Robotics (ISR 2005), Tokyo, 2005.
  13. Crespi A., Badertscher A., Guignard A., Ijspeert A.J., AmphiBot I: an amphibious snake-like robot. „Robotics and Autonomous Systems”, Vol. 50, No. 4, 2005, 163–175, DOI: 10.1016/j.robot.2004.09.015.
  14. Chirikjian G.S., Burdick J.W., An obstacle avoidance algorithm for hyper-redundant manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 1990, 625–631, DOI: 10.1109/ROBOT.1990.126052.
  15. Siciliano B., Khatib O., Kröger T., Springer handbook of robotics, Vol. 200, Springer, 2008.
  16. Murray R.M., Li Z., Sastry S.S., A mathematical introduction to robotic manipulation. CRC press, 1994.
  17. Rolf M., Steil J.J., Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. „IEEE Transactions on Neural Networks and Learning Systems”, Vol. 25, No. 6, 2014, 1147–1160, DOI: 10.1109/TNNLS.2013.2287890.
  18. Melingui A., Escande C., Benoudjit N., Merzouki R., Mbede J.B., Qualitative approach for forward kinematic modeling of a compact bionic handling assistant trunk. „IFAC Proceedings Volumes”, Vol. 47, No. 3, 2014, 9353– 9358, DOI: 10.3182/20140824-6-ZA-1003.01758.
  19. Falkenhahn V., Hildebrandt A., Neumann R., Sawodny O., Dynamic control of the bionic handling assistant. „IEEE/ ASME Transactions on Mechatronics”, Vol. 22, No. 1, 2017, 6–17, DOI: 10.1109/TMECH.2016.2605820.
  20. Martin-Barrio A., Roldán J.J., Terrile S., del Cerro J., Barrientos A., Application of immersive technologies and natural language to hyper-redundant robot teleoperation. „Virtual Reality”, Vol. 24, No. 3, 2020, 541–555, DOI: 10.1007/s10055-019-00414-9.
  21. Galicki M., A closed solution to the inverse kinematics of redundant manipulators. „Mechanism and Machine Theory”, Vol. 26, No. 2, 1991, 221–226, DOI: 10.1016/0094-114X(91)90085-I.
  22. Jacak W., A discrete kinematic model of robots in the Cartesian space. „IEEE Transactions on Robotics and Automation”, Vol. 5, No. 4, 1989, 435–443, DOI: 10.1109/70.88058.
  23. Jacak W., Strategies of searching for collision-free manipulator motions: automata theory approach. „Robotica”, Vol. 7, No. 2, 1989, 129–138, DOI: 10.1017/S0263574700005439.
  24. Fahimi F., Ashrafiuon H., Nataraj C., An improved inverse kinematic and velocity solution for spatial hyper-redundant robots. „IEEE Transactions on Robotics and Automation”, Vol. 18, No. 1, 2002, 103–107, DOI: 10.1109/70.988980.
  25. Maria da Graça Marcos, Machado J.A.T., Azevedo-Perdicoúlis T.-P., A multi-objective approach for the motion planning of redundant manipulators. „Applied Soft Computing”, Vol. 12, No. 2, 2012, 589–599, DOI: 10.1016/j.asoc.2011.11.006.
  26. Galicki M., Morecki A., Finding collision-free trajectory for redundant manipulator by local information available. [In:] RoManSy 9, 1993, 61–71. Springer, DOI: 10.1007/BFb0031432.
  27. Machado J.A.T., Lopes A.M., A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators. „Applied Mathematical Modelling”, Vol. 46, 2017, 716–726, DOI: 10.1016/j.apm.2016.11.005.
  28. Menon M.S., Ravi V.C., Ghosal A., Trajectory planning and obstacle avoidance for hyper-redundant serial robots. „Journal of Mechanisms and Robotics”, Vol. 9, No. 4, 2017, DOI: 10.1115/1.4036571.
  29. Chirikjian G.S., Burdick J.W., Hyper-redundant robot mechanisms and their applications. Proceedings IROS ‚91: IEEE/RSJ International Workshop on Intelligent Robots and Systems ‚91, DOI: 10.1109/IROS.1991.174447.
  30. Chirikjian G.S., Burdick J.W., A hyper-redundant manipulator. „IEEE Robotics & Automation Magazine”, Vol. 1, No. 4, 1994, 22–29, DOI: 10.1109/100.388263.
  31. Tang L., Wang J., Zheng Y., Gu G., Zhu L., Zhu X., Design of a cable-driven hyper-redundant robot with experimental validation. „International Journal of Advanced Robotic Systems”, Vol. 14, No. 5, 2017, DOI: 10.1177/1729881417734458.
  32. Yang Y., Chen Y., Li Y., Chen M.Z., 3D printing of variable stiffness hyper-redundant robotic arm. 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, 3871–3877, DOI: 10.1109/ICRA.2016.7487575.
  33. Wingert A., Lichter M.D., Dubowsky S., Hafez M., Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers. [In:] Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), Vol. 4695, 2002, 415–423, DOI: 10.1117/12.475189.
  34. Akiyuki. Oblique swivel joint mechanisms, 2022. URL http://youtu.be/fSMC4tfOqHM. A YouTube video.
  35. Shammas E., Wolf A., Brown H.B., Choset H., New joint design for three-dimensional hyper redundant robots. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Vol. 4, 2003, 3594–3599, DOI: 10.1109/IROS.2003.1249713.
  36. Shammas E., Wolf A., Choset H., Three degrees-of-freedom joint for spatial hyper-redundant robots. „Mechanism and Machine Theory”, Vol. 41, No. 2, 2006, 170–190, DOI: 10.1016/j.mechmachtheory.2005.04.008.
  37. Ning K., Wörgötter F., A novel concept for building a hyper-redundant chain robot. „IEEE Transactions on Robotics”, Vol. 25, No. 6, 2009, 1237–1248, DOI: 10.1109/TRO.2009.2032968.
  38. Zawidzki M., Szklarski J., Transformations of Arm-Z modular manipulator with Particle Swarm Optimization. ”Advances in Engineering Software”, Vol. 126, 2018, 147– 160, DOI: 10.1016/j.advengsoft.2018.05.003.
  39. Zawidzka E., Szklarski J., Kiński W., Zawidzki M., Prototype of the Arm-Z modular solar tracker. [In:] Conference on Automation, 2022, Springer, 273–282, DOI: 10.1007/978-3-031-03502-9_28.
  40. Zawidzka E., Kiński W., Zawidzki M., Preliminary prototype of a 4-Unit Arm-Z hyper-redundant modular manipulator. [In:] Conference on Automation, 2021, Springer, 285–294, DOI: 10.1007/978-3-030-74893-7_27.