Robust Trajectory Tracking Control of Space Manipulators in Extended Task Space

eng Article in English DOI: 10.14313/PAR_246/27

Marek Banaszkiewicz , send Marek Węgrzyn , Fatina L. Basmadji , Mirosław Galicki Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Branch Zielona Gora, SRD Lab.

Download Article

Abstract

This study provides a new class of controllers for freeflying space manipulators subject to unknown undesirable disturbing forces exerted on the end-effector. Based on suitably defined taskspace non-singular terminal sliding manifold and the Lyapunov stability theory, we derive a class of estimated extended transposed Jacobian controllers which seem to be effective in counteracting the unstructured disturbing forces. The numerical computations which are carried out for a space manipulator consisting of a spacecraft propelled by eight thrusters and holonomic manipulator of three revolute kinematic pairs, illustrate the performance of the proposed controller.

Keywords

Lyapunov stability, robust finite-time task space control, space manipulator, trajectory tracking, unstructured disturbance forces

Sterowanie odporne śledzeniem trajektorii manipulatora kosmicznego w rozszerzonej przestrzeni zadaniowej

Streszczenie

W pracy zaproponowano nową klasę sterowników dla manipulatorów kosmicznych przy uwzględnieniu nieznanych, niepożądanych sił zakłócających wywieranych na koniec efektora. W oparciu o odpowiednio zdefiniowane nieosobliwą, końcową rozmaitość ślizgową i teorię stabilności Lapunowa wyprowadzono klasę rozszerzonych estymowanych transponowanych sterowników Jakobianowych, które wydają się być efektywne w przeciwdziałaniu nieustrukturyzowanych sił zakłócających. Podejście zilustrowano również obliczeniami numerycznymi dla manipulatora kosmicznego składającego się z bazy napędzanej przez osiem pędników typu cold-gas i manipulatora holonomicznego o trzech parach kinematycznych obrotowych.

Słowa kluczowe

manipulator kosmiczny, nieustrukturyzowane siły zakłócające, odporne skończone czasowo sterowanie w przestrzeni zadaniowej, śledzenie trajektorii, stabilność Lapunowa

Bibliography

  1. Basmadji F.L., Chmaj G., Rybus T., Seweryn K., Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers, [In:] Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, Romaniuk R.S., Linczuk M., (Eds), Vol. 11176, International Society for Optics and Photonics. SPIE, 2019, 1158–1172, DOI: 10.1117/12.2537981.
  2. Brogliato B., Neto A.T., Practical stabilization of a class of nonlinear systems with partially known uncertainties, “Automatica”, Vol. 31, No. 1, 1995, 145–150, DOI: 10.1016/0005-1098(94)E0050-R.
  3. Cheah C., On duality of inverse Jacobian and transpose Jacobian in task-space regulation of robots, [In:] Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2006, 2571–2576, DOI: 10.1109/ROBOT.2006.1642089.
  4. Cheah C., Lee K., Kawamura S., Arimoto S., Asymptotic stability of robot control with approximate Jacobian matrix and its application to visual servoing, [In:] Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 4, 2000, 3939–3944, DOI: 10.1109/CDC.2000.912329.
  5. Defoort M., Floquet T., Kökösy A.-M., Perruquetti W., A novel higher order sliding mode control scheme, “Systems & Control Letters”, Vol. 58, No. 2, 2009, 102–108, DOI: 10.1016/j.sysconle.2008.09.004.
  6. Defoort M., Floquet T., Kökösy A.-M., Perruquetti W., Higher order sliding modes in collaborative robotics, [In:] Sliding Modes after the First Decade of the 21st Century: State of the Art, Lecture Notes in Control and Information Sciences, Fridman L., Moreno J., Iriarte R. (Eds), Vol. 412. Berlin, Heidelberg: Springer, 2012, 409–437, DOI: 10.1007/978-3-642-22164-4_15.
  7. Galicki M., Inverse kinematics solution to mobile manipulators, “The International Journal of Robotics Research”, Vol. 22, No. 12, 2003, 1041–1064, DOI: 10.1177/0278364903022012004.
  8. Galicki M., Constraint finite-time control of redundant manipulators, “International Journal of Robust and Nonlinear Control”, Vol. 27, No. 4, 2016, 639–660, DOI: 10.1002/rnc.3591.
  9. Han J.D., He Y., Xu W., Angular acceleration estimation and feedback control: An experimental investigation, “Mechatronics”, Vol. 17, No. 9, 2007, 524–532, DOI: 10.1016/j.mechatronics.2007.05.006.
  10. Hu Q., Zhang J., Maneuver and vibration control of flexible manipulators using variable-speed control moment gyros, “Acta Astronautica”, Vol. 113, 2015, 105–119, DOI: 10.1016/j.actaastro.2015.03.026.
  11. Jia S., Jia Y., Xu S., Hu Q., Maneuver and active vibration suppression of free-flying space robot, “IEEE Transactions on Aerospace and Electronic Systems”, Vol. 54, No. 3, 2018, 1115–1134, DOI: 10.1109/TAES.2017.2775780.
  12. Jia S., Shan J., Finite-time trajectory tracking control of space manipulator under actuator saturation, “IEEE Transactions on Industrial Electronics”, Vol. 67, No. 3, 2020, 2086–2096, DOI: 10.1109/TIE.2019.2902789.
  13. Khaloozadeh H., Homaeinejad M. Reza, Real-time regulated sliding mode controller design of multiple manipulator space free-flying robot, “Journal of Mechanical Science and Technology”, Vol. 24, 2010, 1337–1351, DOI: 10.1007/s12206-010-0403-7.
  14. Moosavian S.A.A., Dynamics and control of free-flying robots in space: A survey, “IFAC Proceedings Volumes”, Vol. 37, No. 8, 2004, 621–626, DOI: 10.1016/S1474-6670(17)32047-5.
  15. Moosavian S.A.A., Papadopoulos E., Free-flying robots in space: an overview of dynamics modeling, planning and control, “Robotica”, Vol. 25, No. 5, 2007, 537–547, DOI: 10.1017/S0263574707003438.
  16. Moosavian S.A.A., Papadopoulos E., Modified transpose Jacobian control of robotic systems, “Automatica”, Vol. 43, No. 7, 2007, 1226–1233, DOI: 10.1016/j.automatica.2006.12.029.
  17. Nanos K., Papadopoulos E.G., On the dynamics and control of free-floating space manipulator systems in the presence of angular momentum, “Frontiers in Robotics and AI”, Vol. 4, 2017, 26.1–26.19, DOI: 10.3389/frobt.2017.00026.
  18. Ratajczak A., Ratajczak J., Trajectory reproduction algorithm in application to an on-orbit docking maneuver with tumbling target, [In:] 12th International Workshop on Robot Motion and Control, RoMoCo 2019, 172–177, DOI: 10.1109/RoMoCo.2019.8787367.
  19. Rybus T., Seweryn K., Sasiadek J.Z., Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC), “Journal of Intelligent & Robotic Systems”, Vol. 85, 2017, 491–509, DOI: 10.1007/s10846-016-0396-2.
  20. Seraji H., A unified approach to motion control of mobile manipulators, “The International Journal of Robotics Research”, Vol. 17, No. 2, 1998, 107–118, DOI: 10.1177/027836499801700201.
  21. Seraji H., Colbaugh R., Improved configuration control for redundant robots, “Journal of Robotic Systems”, Vol. 7, No. 6, 1990, 897–928, DOI: 10.1002/rob.4620070607.
  22. Slotine J.-J.E., Li W., Applied nonlinear control. Englewood Cliffs, New Jersey: Prentice Hall, 1991.
  23. Xu W., Hu Z., Yan L., Yuan H., Liang B., Modeling and planning of a space robot for capturing tumbling target by approaching the dynamic closest point, “Multibody System Dynamics”, Vol. 47, 2019, 203–241, DOI: 10.1007/s11044-019-09683-3.
  24. Yao Q., Robust finite-time trajectory tracking control for a space manipulator with parametric uncertainties and external disturbances, “Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering”, Vol. 236, No. 2, 2022, 396–409, DOI: 10.1177/09544100211014754.
  25. Yoshikawa T., Manipulability of robotic mechanisms, “The International Journal of Robotics Research”, Vol. 4, No. 2, 1985, 3–9, DOI: 10.1177/027836498500400201.
  26. Zappulla R., Virgili-Llop J., Zagaris C., Park H., Sharp A., Romano M., Floating spacecraft symulator test bed for the experimental testing of autonomous guidance, navigation, and control of spacecraft proximity maneuvers and operations, [In:] AIAA/AAS Astrodynamics Specialist Conference. Calhoun, 2016, 1–26, DOI: 10.2514/6.2016-5268