Robotyka: techniki, funkcje, rola społeczna Cz. 1. Techniczne podstawy inteligencji i bezpieczeństwa robotów

pol Article in Polish DOI: 10.14313/PAR_246/5

send Cezary Zieliński Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Automatyki i Informatyki Stosowanej, Nowowiejska 15/19, 00-665 Warszawa

Download Article

Streszczenie

Aby ocenić, jaki wpływ będą miały roboty na społeczeństwo, należy skrupulatnie przeanalizować obecny stan wiedzy, a w szczególności wskazać fundamentalne problemy, które jeszcze nie zostały rozwiązane, mające istotne znaczenie dla potencjalnych zmian społecznych powodowanych rozwojem robotyki. Wspomniany wpływ zależy od inteligencji robotów, więc ten aspekt dominuje w przedstawionej tu analizie. Rozważania zostały podzielone na trzy części: 1) analizę czynników technicznych wpływających na inteligencję i bezpieczeństwo robotów, 2) analizę obecnych możliwości robotów, 3) analizę przewidywań dotyczących rozwoju robotyki, a w konsekwencji poglądów na skutki tego rozwoju dla społeczeństwa. Niniejszy artykuł poświęcony jest pierwszemu z wymienionych tu trzech zagadnień.

Słowa kluczowe

cyberbezpieczństwo robotów, robot, system robotyczny, sztuczna inteligencja

Robotics: Techniques, Functions, Social Role Part 1. Technical Foundations of Intelligence and Security of Robots

Abstract

In order to assess the impact of robots on society, it is necessary to carefully analyze the state-of-the-art, and in particular the fundamental issues that have yet to be resolved,  however having significant impact on the potential societal changes resulting from the development of robotics. The aforementioned impact depends on the level of intelligence of robots, so this aspect dominates in the presented analysis. The presentation has been divided into three parts: 1) analysis of technical factors affecting the intelligence and security of robots, 2) analysis of current capabilities of robots, 3) analysis of diverse predictions of how robotics will evolve, and thus the attitudes towards the influence of the result of this development on society. This part of the paper is devoted to the first of the above mentioned three issues.

Keywords

artificial intelligence, robot, robot cybersecurity, robotic systems

Bibliography

  1. Common Vulnerability Scoring System version 3.1: Specification Document CVSS Version 3.1 Release. https://www.first.org/cvss/ specification-document, 2019.
  2. Google Brain Team. https://research.google/teams/brain/robotics/, 2022.
  3. Aggarwal C.C., Neural Networks and Deep Learning: A Textbook. Springer, 2018, DOI: 10.1007/978-3-319-94463-0.
  4. Alami R., Chatila R., Fleury S., Ghallab M.M., Ingrand F., An architecture for autonomy. The International Journal of Robotics Research, Vol. 17, No. 4, 1998, 315–337, DOI: 10.1177/027836499801700402.
  5. Arabas J., Wykłady z algorytmów ewolucyjnych. Wydawnictwa Naukowo-Techniczne, Warszawa 2001.
  6. Arkin R.C., Behavior-Based Robotics. MIT Press, 1998.
  7. Armbrust C., Kiekbusch L., Ropertz T., Berns K., Soft robot control with a behaviour-based architecture. Soft Robotics, 81–91, Springer, 2015, DOI: 10.1007/978-3-662-44506-8_8.
  8. Ashtiani F., Geers A., Aflatouni F., An on-chip photonic deep neural network for image classification. „Nature”, No. 606, 2022, 501–506, DOI: 10.1038/s41586-022-04714-0.
  9. Azimi M., Pacut A., Investigation into the reliability of facial recognition systems under the simultaneous influences of mood variation and makeup. „Computers & Electrical Engineering”, Vol. 85, 2020, DOI: 10.1016/j.compeleceng.2020.106662.
  10. Beetz M., Chatila R., Hertzberg J., Pecora F., AI Reasoning Methods for Robotics, [In:] Siciliano B., Khatib O. (red.), Springer Handbook of Robotics, Springer, 2016, 329–356, DOI: 10.1007/978-3-319-32552-1_14.
  11. Beetz M., Mösenlechner L., Tenorth M., CRAM – A Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments. „IEEE/RSJ International Conference on Intelligent Robots and Systems”, IROS, Taipei, Taiwan, 1012–1017, DOI: 10.1109/IROS.2010.5650146.
  12. Beni G., From swarm intelligence to swarm robotics. „Lecture Notes in Computer Science”, Vol. 3342, 2004, DOI: 10.1007/978-3-540-30552-1_1.
  13. Beni G., Wang J., Swarm intelligence in cellular robotic systems. „Robots and Biological Systems: Towards a New Bionics”, Springer, 1993, 703–712, Handbook of Robotics, Springer, 2016, 1995–2014, DOI: 10.1007/978-3-319-32552-1_74.
  14. Billard A., Calinon S., Dillmann R., Learning from humans, [In:] Siciliano B., Khatib O. (red.), Springer 1371–1394, DOI: 10.1007/978-3-540-30301-5_60.
  15. Billard A., Calinon S., Dillmann R., Schaal S., Robot programming by demonstration. [In:] Siciliano B., Khatib O. (red.), Springer Handbook of Robotics, Springer, 2008, DOI: 10.1007/978-3-642-58069-7_38.
  16. Blodow N., Jain D., Marton Z., Beetz M., Perception and probabilistic anchoring for dynamic world state logging. 10th IEEE-RAS International Conference on Humanoid Robots, 2010, 160–166, DOI: 10.1109/ICHR.2010.5686341.
  17. Blume C., Jakob W., PASRO: Pascal for Robots. Springer–Verlag, 1985.
  18. Blume C., Jakob W., Programming Languages for Industrial Robots. Springer–Verlag, 1986.
  19. Bodner J., Augustin F., Wykypiel H., Fish J., Muehlmann G., Wetscher G., Schmid T., The da Vinci robotic system for general surgical applications: a critical interim appraisal. “Swiss Medical Weekly”, Vol. 135, 2005, 674–678, DOI: 10.4414/smw.2005.11022.
  20. Bonabeau E., Dorigo M., Theraulaz G., Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, Oxford, 1999.
  21. Brady M., Artificial intelligence and robotics. “Artificial Intelligence”, Vol. 26, No. 1, 1985, 79–121.
  22. Brooks A., Kaupp T., Makarenko A., Williams S., Orebäck A., Towards component-based robotics. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05), 2005, 163–168, DOI: 10.1109/IROS.2005.1545523.
  23. Brooks A., Kaupp T., Makarenko A., Williams S., Orebäck A., Orca: A component model and repository. [In:] Brugali D. (red.), Software Engineering for Experimental Robotics, Vol. 30 serii Springer Tracts in Advanced Robotics, 2007, 231–251, DOI: 10.1007/978-3-540-68951-5_13.
  24. Brooks R.A., Elephants don’t play chess. “Robotics and autonomous systems”, Vol. 6, No. 1–2, 1990, 3–15, DOI: 10.1016/S0921-8890(05)80025-9.
  25. Brooks R.A., A robust layered control system for a mobile robot, “IEEE Journal of Robotics and Automation”, Vol. 2, No. 1, 1986, 14–23, DOI: 10.1109/JRA.1986.1087032.
  26. Brooks R.A., Intelligence without reason, Artificial Intelligence: critical concepts, 3:107–163, 1991.
  27. Brooks R.A., Intelligence without representation. “Artificial Intelligence”, Vol. 47, No. 1–3, 1991, 139–159, DOI: 10.1016/0004-3702(91)90053-M.
  28. Brooks R.A., New approaches to robotics, “Science”, Vol. 253, No. 5025, 1991, 1227–1232, DOI: 10.1126/science.253.5025.1227.
  29. Brucker P., Scheduling Algorithms. Springer-Verlag, Berlin, Heidelberg, wyd. 5, 2007.
  30. Brugali D., Model-driven software engineering in robotics: Models Are Designed to Use the Relevant Things, Thereby Reducing the Complexity and Cost in the Field of Robotics, “IEEE Robotics Automation Magazine”, Vol. 22, No. 3, 2015, 155–166, DOI: 10.1109/MRA.2015.2452201.
  31. Bruyninckx H., Open robot control software: The OROCOS project. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Vol. 3, 2001, 2523–2528, DOI: 10.1109/ROBOT.2001.933002.
  32. Bruyninckx H., The real-time motion control core of the OROCOS project. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2003, 2766–2771, DOI: 10.1109/ROBOT.2003.1242011.
  33. Bulter Z., Rizzi A., Distributed and cellular robots. [In:] Siciliano B., Khatib O. (red.), Springer Handbook of Robotics, Springer, 2008, 911–920, DOI: 10.1007/978-3-540-30301-5_40.
  34. Carlisle B., Robot mechanisms. Proceedings of the 2000 ICRA Millenium IEEE International Conference on Robotics and Automation, 2000, DOI: 10.1109/ROBOT.2000.844134.
  35. Carpenter G., Grossberg S., Adaptive resonance theory. [In:] Sammut C., Webb G. (red.), Encyclopedia of Machine Learning, Springer, 2010, 22–35, DOI: 10.1007/978-0-387-30164-8_11.
  36. Chaumette F., Hutchinson S., Corke P., Visual Servoing. [In:] The Handbook of Robotics, Springer, 2016, 841–866.
  37. Chibani A., Amirat Y., Mohammed S., Matson E., Hagita N., Barreto M., Ubiquitous robotics: Recent challenges and future trends. “Robotics and Autonomous Systems”, Vol. 61, No. 11, 2013, 1162–1172, DOI: 10.1016/j.robot.2013.04.003.
  38. Cichosz P., Systemy uczące się. Wydawnictwa Naukowo-Techniczne, Warszawa 2007.
  39. Cleland-Huang, J., How well do you know your personae non gratae? “IEEE Software”, Vol. 31, No. 4, 2014, 28–31, DOI: 10.1109/MS.2014.85.
  40. Collett T., MacDonald B., Gerkey B., Player 2.0: Toward a practical robot programming framework. Proceedings of the Australasian Conference on Robotics and Automation (ACRA), December 2005.
  41. Cooper B., Driving on the surface of mars using the rover control workstation. Proceedings of the International Conference on Space Operations, SpaceOps ’98, June 1–5 1998.
  42. Coradeschi S., Saffiotti A., An introduction to the anchoring problem. “Robotics and Autonomous Systems”, Vol. 43, No. 2-3, 2003, 85–96, DOI: 10.1016/S0921-8890(03)00021-6. 
  43. Coste-Maniere E., Simmons R., Architecture, the backbone of robotic systems. Proc. IEEE International Conference on Robotics and Automation ICRA ’00, Vol. 1, 2000, 67–72.
  44. Czajka A., Kasprzak W., Wilkowski A., Verification of iris image authenticity using fragile watermarking. “Bulletin of the Polish Academy of Sciences: Technical Sciences”, Vol. 64, No. 4, 2016, 807–819, DOI: 10.1515/bpasts-2016-0090.
  45. Denning T., Friedman B., Kohno T., The security cards – a security threat brainstorming toolkit. https: //securitycards.cs.washington.edu/, 2013.
  46. Dorigo M., Floreano D., Gambardella L., Mondada F., Nolfi S., Baaboura T., Birattari M., Bonani M., Brambilla M., Brutschy A., Burnier D., Campo A., Christensen A., Decugniere A., Di Caro G., Ducatelle F., Ferrante E., Forster A., Gonzales J., Guzzi J., Longchamp V., Magnenat S., Mathews N., Montes de Oca M., O’Grady R., Pinciroli C., Pini G., Retornaz P., Roberts J., Sperati V., Stirling T., Stranieri A., Stutzle T., Trianni V., Tuci E., Turgut A.E., Vaussard F., Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. “IEEE Robotics & Automation Magazine”, Vol. 20, No. 4, 2013, 60–71, DOI: 10.1109/MRA.2013.2252996.
  47. Doriya R., Mishra S., Gupta S., A brief survey and analysis of multi-robot communication and coordination, 2015 International Conference on Computing, Communication Automation (ICCCA), 1014–1021, DOI 10.1109/CCAA.2015.7148524.
  48. Driankov D., Hellendoorn H., Reinfrank M., An Introduction to Fuzzy Control. Springer-Verlag, Berlin, Heidelberg, 1993.
  49. Dudek G., Jenkin M.R.M., Milios E., Wilkes D., A taxonomy for multi-agent robotics. “Autonomous Robots”, Vol. 3, No. 41996, 375–397, DOI: 10.1007/BF00240651.
  50. Dudek W., Szynkiewicz W., Winiarski T., Nao Robot Navigation System Structure Development in an Agent-Based Architecture of the RAPP Platform. [In:] R. Szewczyk, C. Zieliński, M. Kaliczyńska (red.), Recent Advances in Automation, Robotics and Measuring Techniques, Vol. 440 serii Advances in Intelligent Systems and Computing (AISC), Springer, 2016, 623–633, DOI: 10.1007/978-3-319-29357-8_54.
  51. Dudek W., Winiarski T., Scheduling of a Robot’s Tasks with the TaskER Framework. “IEEE Access”, Vol. 8, 2020, 161449–161471, DOI: 10.1109/ACCESS.2020.3020265.
  52. Farinelli A., Iocchi L., Nardi D., Multirobot systems: a classification focused on coordination. “IEEE Transactions on Systems, Man, and Cybernetics”, Part B (Cybernetics), Vol. 34, No. 52004, 2015–2028, DOI: 10.1109/TSMCB.2004.832155.
  53. Fedrizzi A., Mosenlechner L., Stulp F., Beetz M., Transformational planning for mobile manipulation based on action-related places. 14th International Conference on Advanced Robotics, ICAR, Munich, Germany, June 22–26 2009.
  54. Ferrer-Mestres J., Dietterich T., Buffet O., Chadès I., Solving k-mdps. Proceedings of the International Conference on Automated Planning and Scheduling, Vol. 30, 2020, 110–118, DOI: 10.1609/icaps.v30i1.6651.
  55. Figat M., Zieliński C., Parameterised robotic system metamodel expressed by Hierarchical Petri nets. “Robotics and Autonomous Systems”, Vol. 150, 2022, DOI: 10.1016/j.robot.2021.103987.
  56. Fikes R., Nilsson N., Strips: A new approach to the application of theorem proving to problem solving. “Artificial intelligence”, Vol. 2, No. 3–4, 1971, 189–208, DOI: 10.1016/0004-3702(71)90010-5.
  57. Fitzpatrick P., Metta G., Natale L., Towards long-lived robot genes. “Robotics and Autonomous Systems”, Vol. 56, No. 1, 2008, 29–45, DOI: 10.1016/j.robot.2007.09.014.
  58. Gardner M., Mathematical Games: The fantastic combinations of John Conway’s new solitaire game “Life”. “Scientific American”, Vol. 223, 1970, 120–123, DOI: 10.1038/scientificamerican1070-120.
  59. Gat E., On three-layer architectures. D. Kortenkamp, R. P. Bonnasso, R. Murphy (red.), Artificial Intelligence and Mobile Robots, 195–210. AAAI Press Cambridge, MA, 1998.
  60. Gerkey B.P., Vaughan R.T., Støy K., Howard A., Sukhatme G.S., Mataric M.J., Most Valuable Player: A Robot Device Server for Distributed Control. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2001, 1226–1231, DOI: 10.1109/IROS.2001.977150.
  61. Ghallab M., Howe A., Knoblock C., Mcdermott D., Ram A., Veloso M., Weld D., Wilkins D., PDDL—The Planning Domain Definition Language, 1998.
  62. Gierse G., Niemueller T., Claßen J., Lakemeyer G., Interruptible Task Execution with Resumption in Golog. G. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen, (red.), Twenty-Second European Conference on Artificial Intelligence (ECAI), 2016, 1265–1273, Den Haag, The Netherlands, IOS Press, DOI: 10.3233/978-1-61499-672-9-1265.
  63. Gordon D., Ant Encounters: Interaction, Networks and Colony Behavior. Primers in Complex Systems. Princeton University Press, 2010.
  64. Gregory P., Long D., Fox M., Beck C., Planning modulo theories: Extending the planning paradigm. Proceedings of the International Conference on Automated Planning and Scheduling, Vol. 22, No. 1, 2012, 65–73, DOI: 10.1609/icaps.v22i1.13505.
  65. Grossberg S., Conscious Mind, Resonant Brain: How Each Brain Makes a Mind. Oxford University Press, 2021.
  66. Guarino N., Oberle D., Staab S., What is an ontology? S. Staab, R. Studer (red.), Handbook on Ontologies, 1–20. Springer-Verlag, Berlin, 2009.
  67. Hayward V., Paul R.P., Robot manipulator control under Unix RCCL: A robot control C library. “International Journal of Robotics Research”, Vol. 5, No. 4, 1986, 94–111, DOI: 10.1177/027836498600500407.
  68. Hebb D., The Organization of Behavior. Wiley & Sons, New York, 1949.
  69. Horsch M., Poole D., An anytime algorithm for decision making under uncertainty. XIV Conference on Uncertainty in Artificial Intelligence, UAI’98, 1998, 246–255, DOI: 10.5555/2074094.2074123.
  70. Howard M., Lipner S., The Security Development Lifecycle. Microsoft Press, 2006.
  71. Höller D., Behnke G., Bercher P., Biundo S., Fiorino H., Pellier D., Alford R., HDDL: An Extension to PDDL for Expressing Hierarchical Planning Problems. Vol. 34, No. 6, 2020, 9883–9891, DOI: 10.1609/aaai.v34i06.6542.
  72. Jesus A., Liefooghe A., Derbel B., Paquete L., Algorithm selection of anytime algorithms. Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 850–858, DOI: 10.1145/3377930.3390185.
  73. Jonsson P., Krokhin A., Complexity classification in qualitative temporal constraint reasoning. “Artificial Intelligence”, Vol. 160, No. 1-2, 2004, 35–51, DOI: 10.1016/j.artint.2004.05.010.
  74. Kacprzyk J., Rozumowanie w warunkach niepewności. [In:] W. Traczyk (red.), Problemy sztucznej inteligencji, 77–114, Warszawa, 1995. Wiedza i Życie.
  75. Kaelbling L., Littman M., Cassandra A., Planning and acting in partially observable stochastic domains. “Artificial Intelligence”, Vol. 101, No. 1-2, 1998, 99–134, DOI: 10.1016/S0004-3702(98)00023-X.
  76. Kaelbling L., Lozano-Perez T., Integrated task and motion planning in belief space. “The International Journal of Robotics Research”, Vol. 32, No. 9-10, 2013, 1194–1227, DOI: 10.1177/0278364913484072.
  77. Kaisler S., Software Paradigms. Wiley Interscience, Hoboken, 2005.
  78. Kaneko T., Threat analysis using STRIDE with STAMP/STPA. Proceedings of the International Workshop on Evidence-based Security and Privacy in the Wild and the 1st International Workshop on Machine Learning Systems Engineering, wolumen CEUR-2809, Nara, Japan, 2018.
  79. Kasprzak W., Rozpoznawanie obrazów i sygnałów mowy. Oficyna Wydawnicza Politechniki Warszawskiej, 2009.
  80. Kavraki L., LaValle S., The handbook of robotics. Motion Planning, 139–161. Springer, 2016.
  81. Kiekbusch L., Armbrust C., Berns K., Formal verification of behaviour networks including sensor failures. “Robotics and Autonomous Systems”, Vol. 74, 2015, 331–339, DOI: 10.1016/j.robot.2015.08.002.
  82. Kiekbusch L., Armbrust C., Berns K., Formal verification of behaviour networks including hardware failures. Vol. 302, 2016, 571–1582, DOI: 10.1007/978-3-319-08338-4_113.
  83. Kortenkamp D., Simmons R., Brugali D., Robotic systems architectures and programming. B. Siciliano, O. Khatib (red.), Springer Handbook of Robotics, 2nd Edition, 283–306, Springer, 2016, DOI: 10.1007/978-3-319-32552-1_12.
  84. Lacava G., Marotta A., Martinelli F., Saracino A., La Marra A., Gil-Uriarte E., Mayoral-Vilches V., Cybsersecurity issues in robotics. “Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications”, Vol. 12, No. 3, 2021, 1–28, DOI: 10.22667/JOWUA.2021.09.30.001.
  85. Langdon W., Poli R., McPhee N., Koza J., Genetic programming: An introduction and tutorial, with a survey of techniques and applications. J. Fulcher, L. Jain (red.), Computational Intelligence: A Compendium, Vol. 115, 2008, 927–1028, Berlin, Heidelberg, DOI: 10.1007/978-3-540-78293-3_22.
  86. Langton C., Self-reproduction in cellular automata. “Physica D: Nonlinear Phenomena”, Vol. 10, No. 1, 1984, 135–144, DOI: 10.1016/0167-2789(84)90256-2.
  87. Langton C., Artificial Life : An Overview. MIT Press, Cambridge Mass., 1995.
  88. LaValle S., Planning Algorithms. Cambridge University Press, 2006.
  89. Lebedev M., Nicolelis M., Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. “Physiological Reviews”, Vol. 97, No. 2, 2017, 767–837, DOI: 10.1152/physrev.00027.2016.
  90. LeCun Y., A path towards autonomous machine intelligence. https://openreview.net/pdf?id=BZ5a1rkVsf, 2022.
  91. Levine S., Pastor P.S., Krizhevsky A., Ibarz J., Quillen D., Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. “International Journal of Robotics Research”, Vol. 37, No. 4–5, 2018, 421–436, DOI: 10.1177/0278364917710318.
  92. Litman T., Autonomous vehicle implementation predictions implications for transport planning. Victoria Transport Policy Institute, November 2018.
  93. Luger G.F., Stubblefield W.A., Artificial Intelligence and the Design of Expert Systems. Benjamin-Cummings, Redwood, 1989.
  94. Lyons D.M., Prerational intelligence, Vol. 2: Adaptive behavior and intelligent systems without symbols and logic serii Studies in cognitive systems, [In:] A Schema-Theory Approach to Specifying and Analysing the Behavior of Robotic Systems, 51–70. Kluwer Academic, 2001.
  95. Lyons D.M., Arbib M.A., A formal model of computation for sensory-based robotics. “IEEE Transactions on Robotics and Automation”, Vol. 5, No. 3, 1989, 280–293, DOI: 10.1109/70.34764.
  96. Matarić M.J., Michaud F., The Handbook of Robotics, Behavior-Based Systems, 2008, 891– 909. Springer,DOI: 10.1007/978-3-540-30301-5_39.
  97. Matarić M.J., Issues and approaches in the design of collective autonomous agents. “Robotics and Autonomous Systems”, Vol. 16, No. 2-4, 1995, 321–331, DOI: 10.1016/0921-8890(95)00053-4.
  98. Matuszek C., Cabral J., Witbrock M., DeOliveira J., An Introduction to the Syntax and Content of Cyc. Proc. 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, 44–49, Stanford, California, March 2006.
  99. Mazurczyk W., Rzeszutko E., Security–a perpetual war: Lessons from nature. “IEEE IT Professional”, Vol. 17, 2015, 16–22, DOI: 10.1109/MITP.2015.14.
  100. Mead N., Hough E., Stehney T., Security quality requirements engineering (SQUARE). Raport instytutowy CMU/SEI-2005-TR-009, Carnegie Mellon University, Software Engineering Institute, November 2005.
  101. Mead N., Shull F., Vemuru K., Villadsen O., A hybrid threat modeling method. Raport instytutowy CMU/SEI-2018-TN-002, Carnegie Mellon University, Software Engineering Institute, March 2018.
  102. Metta G., Fitzpatrick P., Natale L., YARP: Yet Another Robot Platform. “International Journal on Advanced Robotics Systems”, Vol. 3, No. 1, 2006, 43–48, DOI: 10.5772/5761.
  103. Munson G., The rise and fall of Unimation Inc. – story of robotics innovation & triumph that changed the world! “Robot Magazine”, December 2010.
  104. Müller A., Kirsch A., Beetz M., Transformational planning for everyday activity. 17th International Conference on Automated Planning and Scheduling, ICAPS, 248–255, Providence, Rhode Island, September 22–26 2007.
  105. Nalepa G., From Good Robots to Useful Intelligent Agents. [In:] K. Tchoń, W. Gasparski, (red.), A Treatise on Good Robots, 159–170. Transaction Publishers, 2014.
  106. Nesnas I., The CLARAty project: Coping with hardware and software heterogenity. [In:] D. Brugali (red.), Software Engineering for Experimental Robotics, 31–70. Springer–Verlag, 2007.
  107. Nilsson N., Shakey the robot. SRI International Technical note 323, 1984.
  108. Nordmann A., Hochgeschwender N., Wigand D., Wrede S., A survey on domain-specific modeling and languages in robotics. “Journal of Software Engineering for Robotics”, Vol. 7, 2016, 75–99.
  109. Nwana H., Software agents: an overview. “The Knowledge Engineering Review”, Vol. 11, No. 3, 1996, 205–244, DOI: 10.1017/S026988890000789X.
  110. Nwana H.S., Ndumu D.T., A Brief Introduction to Software Agent Technology, 29–47. Springer Berlin Heidelberg, 1998.
  111. Padgham L., Winikoff M., Developing Intelligent Agent Systems: A Practical Guide. John Wiley & Sons, 2004.
  112. Pan Z., Polden J., Larkin N., Duin S.V., Norrish J., Recent progress on programming methods for industrial robots. “Robotics and Computer-Integrated Manufacturing”, Vol. 28, No. 2, 2012, 87–94, DOI: 10.1016/j.rcim.2011.08.004.
  113. Parker L., Rus D., Sukhatme G., The handbook of robotics. Multiple Mobile Robot Systems, 1335–1380. Springer, 2016.
  114. Parker L.E. Multiple mobile robot systems. [In:] O. Khatib, B. Siciliano (red.), Springer Handbook of Robotics, 921–941. Springer, June 2008.
  115. Pałka P., Wieloagentowe systemy decyzyjne. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2019.
  116. Pedersen M.R., Nalpantidis L., Andersen R.S., Schou C., Bøgh S., Krüger V., Madsen O., Robot skills for manufacturing: From concept to industrial deployment. “Robotics and Computer-Integrated Manufacturing”, Vol. 37, 2016, 282–291, DOI: 10.1016/j.rcim.2015.04.002.
  117. Pilone D., Pitman N., UML 2.0 in a Nutshell. O’Reilly, 2005.
  118. Pinto A., Pedrini H., Krumdick M., Becker B., Czajka A., Bowyer K., Rocha A., Counteracting presentation attacks in face, fingerprint, and iris recognition. [In:] M. Vatsa, R. Singh, A. Majumdar (red.), Deep Learning in Biometrics. CRC Press, 2018.
  119. Pretz K., Don’t Trust Deep Learning, Says Brain Modeler – Stephen Grossberg maintains his approach to intelligence is better. “IEEE Spectrum”, 54–55, June 2022.
  120. Quigley M., Gerkey B., Conley K., Faust J., Foote T., Leibs J., Berger E., Wheeler R., Ng A., ROS: an opensource Robot Operating System. Proceedings of the Open-Source Software Workshop at the International Conference on Robotics and Automation (ICRA), 2009.
  121. Rubenstein M., Cornejo A., Nagpal R., Programmable self-assembly in a thousand-robot swarm. “Science”, Vol. 345, No. 6198, 2014, 795–799, DOI: 10.1126/science.1254295.
  122. Russell S., Norvig P., Artificial Intelligence: A Modern Approach. Pearson Education, Upper Saddle River, N.J., 2003.
  123. Rutkowski L., Metody i techniki sztucznej inteligencji. Wydawnictwo Naukowe PWN, Warszawa, 2005.
  124. Rzeszutko E., Mazurczyk W., Insights from nature for cybersecurity. “Health security”, Vol. 13, No. 2, 2014, 82–87, DOI: 10.1089/hs.2014.0087.
  125. Sacha K., Inżynieria oprogramowania. Wydawnictwo Naukowe PWN, Warszawa, 2010.
  126. Schneier B., Attack trees. “Dr. Dobb’s Journal”, December 1999.
  127. Shevchenko N., Threat modeling: 12 available methods. Raport instytutowy, Carnegie Mellon University, Software Engineering Institute, 2018
  128. Shevchenko N., Chick T., O’Riordan P., Scanlon T., Woody C., Threat modeling: A summary of available methods. Raport instytutowy, Carnegie Mellon University, Software Engineering Institute, July 2018.
  129. Shoham Y., Agent-oriented programming. “Artificial Intelligence”, Vol. 60, No. 1, 1993, 51–92, DOI: 10.1016/0004-3702(93)90034-9.
  130. Shostack A., Experiences Threat Modeling at Microsoft. MODSEC@MoDELS, 2008.
  131. Shull F., Evaluation of threat modeling methodologies. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474197, 2016.
  132. Siciliano B., Sciavicco L., Villani L., Oriolo G., Robotics: Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer, London, 2009.
  133. Silver D., Huang A., Maddison C., Guez A., Sifre L., Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D., Mastering the game of go with deep neural networks and tree search. “Nature”, Vol. 529, 2016, 484–489.
  134. Simoens P., Dragone M., Saffiotti A., The internet of robotic things: A review of concept, added value and applications. “International Journal of Advanced Robotic Systems”, Vol. 15, No. 1, 2018, DOI: 10.1177/1729881418759424.
  135. Staniak M., Zieliński C., Structures of visual servos. “Robotics and Autonomous Systems”, Vol. 58, No. 8, 2010, 940–954, DOI: 10.1016/j.robot.2010.04.004.
  136. Stenmark M., Haage M., Topp E.A., Simplified programming of re-usable skills on a safe industrial robot – prototype and evaluation. Proceedings of the IEEE/ACM Conference on Human-Robot Interaction (HRI), Vienna, Austria, March, 6–9 2017, DOI: 10.1145/2909824.3020227.
  137. Taleby Ahvanooey M., Li Q., Wu M., Wang S., A survey of genetic programming and its applications. KSII Transactions on Internet and Information Systems, Vol. 13, No. 4, 2019, 1765–1793, DOI: 10.3837/tiis.2019.04.002.
  138. Tang F., Parker L., A Complete Methodology for Generating Multi-Robot Task Solutions using ASyMTRe-D and Market-Based Task Allocation., 2007 IEEE International Conference on Robotics and Automation, 3351–3358, DOI: 10.1109/ROBOT.2007.363990.
  139. Tenorth M., Beetz M., KnowRob: a knowledge processing infrastructure for cognition-enabled robots. “International Journal of Robotics Research”, Vol. 32, No. 52013, 566–590, DOI: 10.1177/0278364913481635.
  140. Tenorth M., Perzylo A.C., Lafrenz R., Beetz M., The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments. IEEE International Conference on Robotics and Automation. 2012, DOI: 10.1109/ICRA.2012.6224812.
  141. Tenorth M., Perzylo A.C., Lafrenz R., Beetz M., Representation and exchange of knowledge about actions, objects, and environments in the RoboEarth framework. “IEEE Transactions on Automation Science and Engineering”, Vol. 10, No. 3, 2013, 643–651, DOI: 10.1109/TASE.2013.2244883.
  142. Traczyk W., Metody wnioskowania w systemach ekspertowych. [In:] W. Traczyk (red.), Problemy sztucznej inteligencji, 53–75, Warszawa, 1995. Wiedza i Życie.
  143. Turing A., Computing machinery and intelligence. “Mind”, Vol. 59, No. 236, 1950, 433–460, DOI: 10.1093/mind/LIX.236.433.
  144. Vaughan R.T., Gerkey B.P., Reusable robot software and the Player/Stage project. [In:] D. Brugali (red.), Software Engineering for Experimental Robotics, Vol. 30 serii Springer Tracts in Advanced Robotics, 267–289, Springer, 2007, DOI: 10.1007/978-3-540-68951-5_16.
  145. Čapek K., Four Plays: R.U.R., The Insect Play, The Makropulos Case, The White Plague. Methuen Publishing Ltd., 1999.
  146. von Neumann J., The general and logical theory of automata. Cerebral Mechanisms in Behavior. The Hixon Symposium, 1–41. John Wiley & Sons, New York, 1951.
  147. Wooldridge M., Multiagent systems. Intelligent Agents, 27–77. MIT Press, Cambridge, MA, USA, 1999.
  148. Xia X., Pan X., Li N., He X., Ma L., Zhang X., Ding N., GAN-based anomaly detection: A review. “Neurocomputing”, Vol. 493, 2022, 497–535, DOI: 10.1016/j.neucom.2021.12.093.
  149. Yaacoub J.-P., Noura H., Salman O., Chehab A., Robotics cyber security: Vulnerabilities, attacks, countermeasures, and recommendations. “International Journal of Information Security”, Vol. 21, No. 1, 2022, 115—158, DOI: 10.1007/s10207-021-00545-8. 
  150. Yim M., Shen W.-M., Salemi B., Rus D., Moll M., Lipson H., Klavins E., Chirikjian G.S., Modular self-reconfigurable robot systems [grand challenges of robotics]. “IEEE Robotics & Automation Magazine”, Vol. 14, No. 1, 2007, 43–52, DOI: 10.1109/MRA.2007.339623.
  151. Zhang X., Zhu Y., Ding Y., Zhu Y., Stone P., Zhang S., Visually grounded task and motion planning for mobile manipulation. IEEE International Conference on Robotics and Automation (ICRA), May 23–27 2022.
  152. Zheng N., Mazumder P., Fundamentals and learning of artificial neural networks. [In:] Learning in Energy Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design, 11–60, 2020.
  153. Zielińska E., Mazurczyk W., Szczypiorski K., Trends in steganography. “Communications of the ACM”, Vol. 57, No. 3, 2014, 86–95, DOI: 10.1145/2566590.2566610.
  154. Zieliński C., TORBOL: An object level robot programming language. “Mechatronics”, Vol. 1, No. 4, 1991, 469–485, DOI: 10.1016/0957-4158(91)90032-6.
  155. Zieliński C., Description of semantics of robot programming languages. “Mechatronics”, Vol. 2, No. 2, 1992, 171–198, DOI: 10.1016/0957-4158(92)90030-R.
  156. Zieliński C., The MRROC++ system. Proceedings of the First Workshop on Robot Motion and Control, RoMoCo ’99, 147–152, DOI: 10.1109/ROMOCO.1999.791067.
  157. Zieliński C., A Quasi-Formal Approach to Structuring Multi-Robot System Controllers. Second International Workshop on Robot Motion and Control, RoMoCo ’01, 121–128, DOI: 10.1109/ROMOCO.2001.973442.
  158. Zieliński C., Formal approach to the design of robot programming frameworks: the behavioural control case. “Bulletin of the Polish Academy of Sciences – Technical Sciences”, Vol. 53, No. 1, 2005, 57–67.
  159. Zieliński C., Systematic approach to the design of robot programming frameworks. Proceedings of the 11th IEEE International Conference on Methods and Models in Automation and Robotics (on CD), 639–646. Technical University of Szczecin, 2005.
  160. Zieliński C., Transition-function based approach to structuring robot control software. [In:] K. Kozłowski (red.), Robot Motion and Control, Vol. 335 serii Lecture Notes in Control and Information Sciences, 2006, 265–286. Springer-Verlag.
  161. Zieliński C., Koboty – w przemyśle i laboratoriach badawczych. „Automatyka”, Nr 12, 2020, 28–40, 2020.
  162. Zieliński C., Robotic System Design Methodology Utilising Embodied Agents, Vol. 296 serii Advances in Intelligent Systems and Computing, 523–561. Springer, 2021.
  163. Zieliński C., Kornuta T., Stefańczyk M., Szynkiewicz W., Trojanek P., Walęcki M., Języki programowania robotów przemysłowych. „Pomiary Automatyka Robotyka”, Vol. 16, Nr 11, 2012, 10–19.
  164. Zieliński C., Stefańczyk M., Kornuta T., Figat M., Dudek W., Szynkiewicz W., Kasprzak W., Figat J., Szlenk M., Winiarski T., Banachowicz K., Zielińska T., Tsardoulias E.G., Symeonidis A.L., Psomopoulos F.E., Kintsakis A.M., Mitkas P.A., Thallas A., Reppou S.E., Karagiannis G.T., Panayiotou K., Prunet V., Serrano M., Merlet J.-P., Arampatzis S., Giokas A., Penteridis L., Trochidis I., Daney D., Iturburu M., Variable structure robot control systems: The RAPP approach. “Robotics and Autonomous Systems”, Vol. 94, 2017, 226–244, DOI: 10.1016/j.robot.2017.05.002.
  165. Zieliński C., Kornuta T., Diagnostic requirements in multi-robot systems. [In:] J. Korbicz, M. Kowal (red.), Intelligent Systems in Technical and Medical Diagnostics, Vol. 230 serii Advances in Intelligent Systems and Computing, 345–356. Springer, 2014.
  166. Zieliński C., Kornuta T., Programowe struktury ramowe do tworzenia sterowników robotów, „Pomiary Automatyka Robotyka”, R. 19, Nr 1, 2015, 5-14, DOI: 10.14313/PAR_215/5.
  167. Zieliński C., Szynkiewicz W., Mianowski K., Nazarczuk K., Mechatronic design of open-structure multirobot controllers. “Mechatronics”, Vol. 11, No. 8, 2001, 987–1000, DOI: 10.1016/S0957-4158(00)00038-6.
  168. Zieliński C., Trojanek P., Stigmergic cooperation of autonomous robots. “Journal of Mechanism and Machine Theory”, Vol. 44, No. 4, 2009, 656–670, DOI: 10.1016/j.mechmachtheory.2008.08.012.