Strategie sterowania ślizgowego z ruchomą hiperpowierzchnią przełączeń - krótki przegląd
Streszczenie
Strategie sterowania ślizgowego są cenione za swoją całkowitą niewrażliwość na klasę zakłóceń i niepewności modelu. Uzyskanie tej właściwości jest możliwe przez sprowadzenie punktu opisującego dynamikę układu na pewną hiperpowierzchnię przełączeń zdefiniowaną w przestrzeni stanów. W początkowym etapie sterowania, w którym punkt opisujący zbliża się do tej hiperpowierzchni, układ pozostaje wrażliwy na zakłócenia, co utrudnia projektowanie skutecznych strategii sterowania ślizgowego. Aby zapewnić odporność układu na zakłócenia i niepewności modelu na wszystkich etapach procesu sterowania liczni autorzy zaproponowali zastosowanie ruchomych hiperpowierzchni przełączeń. Celem niniejszego artykułu przeglądowego jest przedstawienie najważniejszych osiągnięć z zakresu sterowania ślizgowego z wykorzystaniem takich hiperpowierzchni. Omówione są pionierskie prace proponujące zastosowanie ruchomych hiperpowierzchni przełączeń oraz przedstawione są metody ich projektowania. Następnie podkreślone są najważniejsze osiągnięcia z zakresu sterowania ślizgowego wykorzystującego ruchome hiperpowierzchnie przełączań zarówno dla układów ciągłych jak i dyskretnych.
Słowa kluczowe
ruchome hiperpowierzchnie przełączeń, sterowanie ślizgowe, teoria sterowania
Sliding Mode Control Strategies with a Time-Varying Switching Hypersurface - a Brief Survey
Abstract
Sliding mode control strategies are valued for their total insensitivity to the class of disturbances and uncertainty of the model. Obtaining this property is possible by bringing a point describing the dynamics of the system to a certain switching hypersurface defined in the state space. At the initial stage of control, where the description point approaches this hypersurface, the system remains sensitive to interferences, which hinders the design of effective sliding mode control strategies. To ensure the system’s resistance to interference and model uncertainty at all stages of the control process, many authors proposed the use of mobile switching hypersurfaces. The purpose of this review article is to present the most important achievements in the area of sliding mode control using such hypersurfaces. Discussed are pioneering works proposing the use of mobile switching hypersurfaces and methods of their design are presented. Next, the most important achievements in the area of sliding mode control using movable switching hypersurfaces for both continuous and discrete systems are highlighted.
Keywords
control theory, sliding mode control, time-varying sliding hypersurface
Bibliography
- Emelyanov S.V., Variable Structure Control Systems, Nauka, Moskwa 1967.
- Itkis Y., Control Systems of Variable Structure, Nauka, Moskwa, 1976.
- Utkin V., Variable structure systems with sliding modes, “IEEE Transactions on Automatic Control”, Vol. 22, No. 2, 1976, 212–222, DOI: 10.1109/TAC.1977.1101446.
- Drazenovic B., The invariance conditions in variable structure systems, “Automatica”, Vol. 5, No. 3, 1969, 287–295, DOI: 10.1016/0005-1098(69)90071-5.
- Milosavljevic C., General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems, “Automation and Remote Control”, Vol. 46, No. 3, 1985, 307–314.
- Drakunov S. V., Utkin V., On discrete-time sliding modes, “IFAC Proceedings Volumes”, Vol. 22, No. 3, 1989, 273–278, DOI: 10.1016/S1474-6670(17)53647-2.
- Choi S.B., Cheong C.C., Park D.W., Moving switching surfaces for robust control of second-order variable structure systems, “International Journal of Control”, Vol. 58, No. 1, 1993, 229–245, DOI: 10.1080/00207179308922999.
- Choi S.B., Park D.W., Jayasuriya S., A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems, “Automatica”, Vol. 30, No. 5, 1994, 899–904, DOI: 10.1016/0005-1098(94)90180-5.
- Choi S.B., Park D.W., Moving sliding surfaces for fast tracking control of second-order dynamical systems, “Journal of Dynamic Systems, Measurement and Control”, Vol. 116, No. 1, 1994, 154–158, DOI: 10.1115/1.2900671.
- Bartoszewicz A., A comment on ’A time-carying sliding surface for fast and robust tracking control of second-order uncertain systems’, “Automatica”, Vol. 31, No. 12, 1995, 1893–1895, DOI: 10.1016/0005-1098(95)00122-1.
- Ha Q., Rye D., Durrant-Whyte H., Fuzzy moving sliding mode control with application to robotic manipulators, “Automatica”, Vol. 35, No. 4, 1999, 607–616, DOI: 10.1016/S0005-1098(98)00169-1.
- Zhang J., Jiang K., Chen Z., Zhao Z., Global robust fuzzy sliding mode for a class of non-linear system, “Transactions of the Institute of Measurement and Control”, Vol. 28, No. 3, 2006, 219–227, DOI: 10.1191/0142331206tim174oa.
- Bartoszewicz A., Time-varying sliding modes for second-order systems, “IEE Proceedings – Control Theory and Applications”, Vol. 143, No. 5, 1996, 455–462, DOI: 10.1049/ip-cta:19960535.
- Nowacka-Leverton A., Michałek M., Pazderski D., Bartoszewicz A., Experimental verification of SMC with moving switching lines applied to hoisting crane vertical motion control, “ISA Transactions”, Vol. 51, No. 6, 2012, 682–693, DOI: 10.1016/j.isatra.2012.05.003.
- Yongqiang J., Xiangdong L., Wei Q., Chaozhen H., Time-varying sliding mode controls in rigid spacecraft attitude tracking, “Chinese Journal of Aeronautics”, Vol. 21, No. 4, 2008, 352–360, DOI: 10.1016/S1000-9361(08)60046-1.
- Tokat S., Sliding mode controlled bioreactor using a time-varying sliding surface, “Transactions of the Institute of Measurement and Control”, Vol. 31, No. 5, 2009, 435–456, DOI: 10.1177/0142331208100893.
- Nowacka-Leverton A., Bartoszewicz A., ITAE optimal variable structure control of second order system with input signal and velocity constraints, “Kybernetes”, Vol. 38, No. 7–8, 2009, 1093–1105, DOI: 10.1108/03684920910976844.
- Bartoszewicz A., Nowacka A., Reaching phase elimination in variable structure control of the third order system with state constraints, “Kybernetika”, Vol. 42, No. 1, 2006, 111–126, http://eudml.org/doc/33795.
- Bartoszewicz A., Nowacka A., Optimal design of the shifted switching planes for VSC of a third-order system, “Transactions of the Institute of Measurement and Control”, Vol. 28, No. 4, 2006, 335–352, DOI: 10.1177/0142331206070366.
- Bartoszewicz A., Nowacka A., Sliding mode control of the third-order system subject to velocity, acceleration and input signal constraints, “International Journal of Adaptive Control and Signal Processing”, Vol. 21, No. 8-9, 2007, 779-794, DOI: 10.1002/acs.970.
- Bartoszewicz A., Nowacka-Leverton A., ITAE optimal sliding modes for third-order systems with input signal and state constraints, “IEEE Transactions on Automatic Control”, Vol. 55, No. 8, 2010, 1928–1932, DOI: 10.1109/TAC.2010.2049688.
- Bartoszewicz A., Nowacka-Leverton A., SMC without the reaching phase – the switching plane design for the third order system, “IET Control Theory and Applications”, Vol. 1, No. 5, 2007, 1461–1470, DOI: 10.1049/ietcta:20060458.
- Bartoszewicz A., Nowacka-Leverton A., Time-Varying Sliding Modes for Second and Third Order Systems, Springer-Verlag, Berlin, 2009.
- Roy R. G., Olgac N., Robust nonlinear control via moving sliding surfaces – n-th order case, 36th Conference on Decision & Control, San Diego, USA, 1997, 943–948, DOI: 10.1109/CDC.1997.657564.
- Lee H., Kim E., Kang H. J., Park M., Design of a sliding mode controller with fuzzy sliding surfaces, “IEEE Proceedings – Control Theory and Applications”, Vol. 145, No. 5, 1998, 411–418, DOI: 10.1049/ip-cta:19982242.
- Takagi T., Sugeno M., Fuzzy identification of systems and its applications to modeling and control, “IEEE Transactions on Systems, Man, and Cybernetics”, Vol. SMC-15, No. 1, 1985, 116-132, DOI: 10.1109/TSMC.1985.6313399.
- Park D. W., Choi S. B., Moving sliding surfaces for high-order variable structure systems, “International Journal of Control”, Vol. 72, No. 11, 1999, 960–970, DOI: 10.1080/002071799220506.
- Jamshidi M., Vadiee N., Ross T. J., Fuzzy Logic and Control: Software and Hardware Applications, Prentice Hall,Eaglewood Cliffs, NJ, 1993.
- Tokat S., Eksin I., Guzelkaya M., A new design method for sliding mode controllers using a linear time-varying sliding surface, “Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering”, Vol. 216, No. 1, 2002, 455–466, DOI: 10.1243/095965102321042218.
- Eksin I., Tokat S., Guzelkaya M., Soylemez M. T., Design of a sliding mode controller with a nonlinear time-varying sliding surface, “Transactions of the Institute of Measurement and Control”, Vol. 25, No. 2, 2003, 145–162, DOI: 10.1191/0142331203tm079oa.
-
Fung E. H. K., Lee C. K. M., Variable structure tracking control of a single-link flexible arm using time-varying sliding surface, “Journal of Robotic Systems”, Vol. 16, No. 12, 1999, 715–726,
DOI: 10.1002/(SICI)1097-4563(199912)16:12<715::AID-ROB4>3.0.CO;2-6. - Betin F., Pinchon D., Capolino G., A time-varying sliding surface for robust position control of a DC motor drive, “IEEE Transaction on Industrial Electronics”, Vol. 49, No. 2, 2002, 462–473, DOI: 10.1109/41.993280.
- Sivert A., Betin F., Faqir A., Capolino G. A., Robust control of an induction machine drive using a time-varying sliding surface, Proceedings of the IEEE International Symposium on Industrial Electronics, Ajaccio, Francja, 2004, 1369–1374, DOI: 10.1109/ISIE.2004.1572012.
- Sivert A., Faqir A., Nahidmobarakeh B., Betin F., Capolino G. A., Moving switching surfaces for high precision position control of electrical drives, Proceedings of the IEEE International Conference on Industrial Technology, Hammamet, Tunezja, 2004, 175–180, DOI: 10.1109/ICIT.2004.1490278.
- Corradini M. L., Orlando G., Linear unstable plants with saturating actuators: Robust stabilization with a time-varying sliding surface, “Automatica”, Vol. 43, No. 1, 2002, 88–94, DOI: 10.1016/j.automatica.2006.07.018.
- Yorgancioglu F., Komurcugil H., Decoupled sliding-mode controller based on time-varying sliding surfaces for fourth-order systems, “Expert Systems with Applications”, Vol. 37, No. 10, 2010, 6764–6774, DOI: 10.1016/j.eswa.2010.03.049.
- Gao W., Wang Y., Homaifa A., Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics, Vol. 42, No. 2, 1995, 117–122, DOI: 10.1109/41.370376.
- Latosinski P., Sliding mode control based on the reaching law approach – a brief survey, 22nd International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Polska, 2017, 519–524, DOI: 10.1109/MMAR.2017.8046882.
- Yu W. C., Wang G. J., Chang C. C., Discrete sliding mode control with forgetting dynamic sliding surface, “Mechatronics”, Vol. 14, No. 7, 2004, 737–755, DOI: 10.1016/j.mechatronics.2004.01.003.
- Kanai Y., Mori Y., Discrete time sliding mode control with time varying switching hyper plane, SICE Annual Conference, Tokio, Japonia, 2008, 2349–2352, DOI: 10.1109/SICE.2008.4655058.
- Hu Q., Du C., Xie L., Wang Y., Discrete-time sliding mode control with time-varying surface for hard disk drives, “IEEE Transactions on Control Systems Technology”, Vol. 17, No. 1, 2009, 175–183, DOI: 10.1109/TCST.2008.922505.
- Yadav N. K., Singh R. K., Discrete-time nonlinear sliding mode controller, “International Journal of Engineering, Science and Technology”, Vol. 3, No. 3, 2011, 94–100.
- Corradini M. L., Cristofano A., Orlando G., Stabilization of discrete-time linear systems with saturating actuators using sliding modes: application to a twin-rotor system, 50th Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 2011, 1–6, DOI: 10.1109/CDC.2011.6160601.