Algorytmika wyznaczania względnej pozycji łazików marsjańskich

pol Article in Polish DOI: 10.14313/PAR_218/43

send Jan Kotlarz , Natalia Zalewska Instytut Lotnictwa, al. Krakowska 110/114, 02-256 Warszawa

Download Article

Streszczenie

W artykule przedstawiono rozwój metod nawigacyjnych w kolejnych misjach marsjańskich ZSRR, UE i USA oraz opisano najważniejsze algorytmy wyznaczania względnej pozycji na podstawie analizy zdjęć panchromatycznych rejestrowanych przez współczesne łaziki i zdjęć wykonanych przez satelity znajdujące się na orbicie Czerwonej Planety. Zaprezentowane wnioski mogą służyć jako wskazówki do wypracowania założeń i warunków przeprowadzenia eksperymentu użycia wybranych algorytmów na łaziku lub komputerze dowolnej platformy wielosensorowej.

Słowa kluczowe

algorytmy precyzyjnego pozycjonowania, algorytmy teledetekcyjne, Mars, obsługa naziemna, systemy autonomiczne, teleobecność, łazik

Mars Rovers Localisation Algorithms

Abstract

The current European Space Agency space programs assume the use of autonomous, mobile, equipped with advanced scientific instruments rovers on the Moon and Mars surfaces. Precise determination of position and orientation is one of the most important skills in such programs. During succesive missions a number of image-processing algorithms for determining rover position were developed. The results showed that the algorithm able to determine precisely position in any type of a terrain and for any kind of conditions does not exist. Scientists and engineers from ESA’s ESTEC are have been carrying out works on two different directions of algorithms development. First: algorithm that will be applicable to most of conditions on Mars, second: development of previous algorithms results validation methods (cross-validation, perhaps). In this paper we present navigation techniques in past Russian, European and US missions to the Mars and the most important image-processing algorithms for determining rover position. Our conclusions can be used as a guide for assumptions and conditions of the autonomous navigation experiment design.

Keywords

autonomy, commanding, global positioning algorithms, ground operations, Mars, remote sensing algorithms, rovers, telepresence

Bibliography

  1. Beeson N., SpiritTraverseMap, [http://marsrover.nasa.gov/mission/tm-spirit/images/MERA_A1506_2.jpg]
  2. Beeson N., OpportunityTraverseMap, [http://marsrover.nasa.gov/mission/tm-opportunity/images/MERB_Sol2055_1.jpg]
  3. Biesiadecki J.J., Maimone M.W., The Mars Exploration Rover surface mobility flight software: Driving ambition, “Proc. 2006 IEEE Aerospace Conference”, DOI: 10.1109/AERO.2006.1655723.
  4. Biesiadecki J.J., Maimone M.W., Morrison J., The Athena SDM rover: A testbed for Mars rover mobility, “Proc. International Symposium on Artificial Intelligence”, Montreal, Canada, 2001.
  5. Boukas E., Gasteratos A., Visentin G., Localization of planetary exploration rovers with orbital imaging: a survey of approaches, “Robotics and Automation Workshop: on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots” (ICRA Workshop), 2014.
  6. Cheng Y., Maimone M.W., Matthies L., Visual odometry on the Mars exploration rovers, “Proc. IEEE International Conference on Systems, Man and Cybernetics”, 2005.
  7. Cooper B., Driving on the surface of Mars using the Rover Control Workstation, SpaceOps Conference International Conference on Space Operations, 1998.
  8. Cozman F., Krotkov E., Robot localization using a computer vision sextant, IEEE International Conference on Robotics and Automation, 1995, 106–111, DOI: 10.1109/ROBOT.1995.525271.
  9. Cozman F., Krotkov E., Guestrin C., Outdoor visual position estimation for planetary rovers, “Autonomous Robots”, vol. 9, 2/2000, 135–150, DOI: 10.1023/A:1008966317408.
  10. Czapski P., Kotlarz J., Kubiak K., Tkaczyk M., Analiza czynnikowa zdjęć wielospektralnych, „Prace Instytutu Lotnictwa”, 1/2014, 143–150.
  11. D’Luna L.J., Frosini D.A., VLSI Digital Signal Processing Chipset for Color Image Sensors, Electronic Imaging, 1992.
  12. Forsyth D.A., Ponce J., Computer Vision: A modern approach, Prentice Hall, 2003.
  13. Li R., Squyres S.W., Arvidson R.E., Archinal B.A., et al Initial results of rover localization and topographic mapping for the 2003 mars exploration rover mission, “Photogrammetric engineering and remote sensing”, Vol. 71, No. 10, 2005, 1129−1142.
  14. Li R., Ma F., Xu F., Matthies L., Olson C., Xiong Y., Large scale mars mapping and rover localization using escent and rover imagery, “International Archives of Photogrammetry and Remote Sensing”, Vol. 33, part B4, 2000, 579–586.
  15. Maimone M. et al., Intelligence for Space Robotics, 51−52.
  16. Matthies L., Olson C., Tharp G., Laubach S., Visual localization methods for mars rovers using lander, rover, and descent imagery, International Symposium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS), Tokio, Japonia, 1997, 413–418.
  17. Matthies L., Gat E., Harrison R., Wilcox B., Volpe R., Litwin T., Mars microrover navigation: Performance evaluation and enhancement, “Autonomous Robots”, Vol. 2, 4/1995, 291−312, DOI: 10.1007/BF00710796.
  18. Mishkin A.H., Morrison J.C., Nguyen T.T., Stone H.W., Cooper B.K., Wilcox B.H., Experiences with operations and autonomy of the Mars Pathfinder Microrover, „Proc. 1998 IEEE Aerospace Conference”, 337−351, DOI: 10.1109/AERO.1998.687920.
  19. Perminov V.G., The Diffcult Road to Mars A Brief History of Mars Exploration in the Soviet Union, CreateSpace Independent Publishing Platform, 1999, 34–60.
  20. Stein F., Medioni G., Map-based localization using the panoramic horizon, IEEE Transactions on Robotics and  Automation, Vol. 11, 6/1995, 892–896.
  21. Van Pham B., Maligo A., Lacroix S., Absolute map-based localization for a planetary rover, 12th Sympusium on Advanced Space Technologies and Automation in Robotics, May 2013, Noordwijk, Netherlands, 1−8.
  22. Volpe R., Navigation results from desert field tests of the Rocky 7 Mars rover prototype, “International Journal of Robotic Research”, Vol. 18, No. 7/1999, 669−683, DOI: 10.1177/02783649922066493.
  23. Wilford J.N. (ed.), Cosmic Dispatches: The New York Times Reports on Astronomy and Cosmology, W.W. Norton & Company, 2002, 44−58.
  24. Xu F., Ma F., Li R., Matthies L., Olson C., Automatic generation of a hierarchical DEM for Mars rover navigation, Proceedings of the 3rd Mobile Mapping Conference, Kair, Egipt 2001.
  25. ‘Lost’ 2003 Mars Lander Found by Mars Reconnaissance Orbiter, [www.nasa.gov/jpl/lost-2003-mars-lander-foundby-mars-reconnaissance-orbiter/#.VPAxifmG9tg].