Komputerowe metody badania stabilności modelu Fornasiniego-Marchesiniego liniowych układów 2D

pol Article in Polish DOI:

Mikołaj Busłowicz Politechnika Białostocka Wydział Elektryczny

Download Article

Streszczenie

Rozpatrzono problem badania asymptotycznej stabilności liniowych układów dynamicznych dwuwymiarowych (2D). Podano komputerowe metody badania asymptotycznej stabilności modelu Fornasiniego-Marchesiniego w przypadku ogólnym oraz analityczne metody w przypadku szczególnym układu skalarnego. Rozważania zilustrowano przykładami liczbowymi.

Słowa kluczowe

liniowe układy dynamiczne dwuwymiarowe, model Fornasiniego-Marchesiniego, stabilność asymptotyczna

Computer methods for stability investigation of the Fornasini-Marchesini model of linear 2D systems

Abstract

The problem of asymptotic stability of linear dynamic 2D systems is considered. Computer methods for asymptotic stability analysis of the Fornasini-Marchesini model in the general case and analytic methods in the case of scalar systems are given. The considerations are illustrated by numerical examples.

Keywords

asymptotic stability, Fornasini-Marchesini model, linear dynamic 2D systems

Bibliography

  1. Bistritz Y.: On an inviable approach for derivation of 2-D stability tests. IEEE Trans. Circuit Syst. II, vol. 52, no. 11, pp. 713-718, 2005.
  2. Du C., Xie L.: Stability analysis and stabilization of uncertain two-dimensional discrete systems: an LMI approach. IEEE Trans. Circuit Syst., I 46, pp. 1371-1374. 1999.
  3. Fornasini E, Marchesini G.: State-space realization theory of two-dimensional filters. IEEE Trans. Automat. Control, vol. AC-21, pp. 484-492, 1976.
  4. Hu X., Jury E. I.: On two-dimensional filter stability test. IEEE Trans. Circuits Syst., vol. 41, no. 7, pp. 457-462, 1994.
  5. Hu G. D., Liu M.: Simple criteria for stability of two-dimensional linear systems. IEEE Trans. Signal Processing, 53, pp. 4720-4723, 2005.
  6. Huang T. S.: Stability of two-dimensional recursive filters. IEEE Trans. Audio Electroacoustics, vol. AU-20, pp. 158-163, 1972.
  7. Kaczorek T.: Two-Dimensional Linear Systems. Springer, Berlin 1985.
  8. Kaczorek T.: Dodatnie układy jedno- i dwuwymiarowe. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2000.
  9. Kaczorek T.: Positive 1D and 2D Systems. Springer, London 2002.
  10. Kaczorek T.: Positive different orders fractional 2D linear systems. Acta Mechanica et Automatica, vol.2, no. 2, pp. 51-58, 2008.
  11. Kaczorek T.: Fractional 2D linear systems. Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 2, no. 2, pp. 5-9, 2008.
  12. Kaczorek T.: Positive 2D fractional linear systems. International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL, vol. 28, no. 2, pp. 341-352, 2009.
  13. Kaczorek T.: LMI approach to stability of 2D positive systems with delays. Multidimensional Systems and Signal Processing, 20, pp. 39-54, 2009.
  14. Kaczorek T.: Asymptotic stability of positive fractional 2D linear systems. Bull. Pol. Acad. Sci., Tech. Sci.,vol. 57, no. 3, pp. 289-292, 2009.
  15. Kaczorek T.: Positivity and stabilization of 2D linear systems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, no. 29, pp. 43-52, 2009.
  16. Kaczorek T.: Wybrane zagadnienia teorii układów niecałkowitego rzędu. Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2009.
  17. Kaczorek T.: Practical stability of positive fractional 2D linear systems. Multidimensional Systems and Signal Processing, 21, pp. 231-238, 2010.
  18. Kurek J.: Stability of positive 2D systems described by the Roesser model. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49, no. 4, pp. 531-533, 2002.
  19. Kar H., Sigh V.: Stability of 2-D systems described by the Fornasini-Marchesini first model. IEEE Trans. Signal Processing, 51, pp. 1675-1676, 2003.
  20. Liu T.: Stability analysis of linear 2-D systems. Signal Processing, 88, pp. 2078-2084, 2008.
  21. Lu W.-S.: On a Lyapunov approach to stability analysis of 2-D digital filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, pp. 665-669, 1994.
  22. Maria G. A., Fahmy M. M.: On the stability of two-dimensional digital filters. IEEE Trans. Audio Electroacoust., vol. AU-21, no. 4, pp. 470-472, 1973.
  23. Ooba T.: On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities. IEEE Trans. Circuit Syst. I, Fundam. Theory Appl., vol. 47, pp. 1263-1265, 2000.
  24. Siljak D. D.: Stability criteria for two-variable polynomials. IEEE Trans. Circuit Syst., 22, pp. 185-189, 1975.
  25. Strintzis M. G.: Test of stability of multidimensional filters. IEEE Trans. Circuits Syst., vol. CAS-24, pp. 432-437, 1977.
  26. Su Y., Bhaya A.: On the Bose-Trautman condition for stability of two-dimensional linear systems. IEEE Trans. Signal Process., 46, pp. 2069-2070, 1998.
  27. Twardy M.: An LMI approach to checking stability of 2D positive systems. Bull. Pol. Acad. Sci., Tech. Sci., vol. 55, no. 4, pp. 385-395, 2007.
  28. Xiao X., Unbehauen R.: New stability test algorithm for two-dimensional digital filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 7, pp. 739-741, 1998.
  29. Yang S.-F., Hwang C.: An improved stability test algorithm for two-dimensional digital filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 7, pp. 1120-1123, 2000.