Praktyczna stabilność oraz asymptotyczna stabilność stożkowych ułamkowych układów liniowych dyskretnych
Streszczenie
Podano nową koncepcję praktycznej stabilności oraz asymptotycznej stabilności stożkowych liniowych ułamkowych układów dyskretnych. Sformułowano i udowodniono warunki konieczne i wystarczające dla praktycznej stabilności oraz asymptotycznej stabilności stożkowych układów ułamkowych. Wykazano, że: 1) stożkowe układy ułamkowe są praktycznie stabilne wtedy i tylko wtedy, gdy odpowiadające im układy dodatnie są praktycznie stabilne, 2) dodatnie układy ułamkowe są praktycznie niestabilne jeżeli odpowiadające im standardowe dodatnie układy ułamkowe są asymptotycznie niestabilne. Sformułowano również proste warunki na stabilność asymptotyczną. Rozważania zostały zobrazowane przykładami numerycznymi.
Słowa kluczowe
stabilność asymptotyczna, stabilność praktyczna, układ dyskretny
Practical stability and asimptotic stability of cone fractional discrete-time linear systems
Abstract
A new concept (notion) of the practical stability and asymptotic stability of cone fractional discrete-time linear systems is introduced. Necessary and sufficient conditions for the practical stability and asymptotic stability of the cone fractional systems are established. It is shown that: 1) the cone fractional systems are practically stable if and only if the corresponding positive systems are practically stable, 2) the positive fractional systems are practically unstable if corresponding positive fractional systems are asymptotically unstable. Simple conditions for the asymptotic stability are also established. Considerations are illustrated by numerical example.
Keywords
asymptotic stability, discrete-time systems, practical stability
Bibliography
- Busłowicz M., Robust stability of positive discrete-time linear systems with multiple delays with unity rank uncertainty structure or non-negative perturbation matrices, Bull. Pol. Acad. Techn. Sci. 2007, Vol. 55, No. 1, pp. 347-350.
- Busłowicz M., Robust stability of convex combination of two fractional degree characteristic polynomials, Acta Mechanica et Automatica, 2008.
- Busłowicz M., Simple stability conditions for linear positive discrete-time systems with delays, Bull. Pol. Acad. Sci. Tech., Vol. 56, No.4, 2008 (in Press).
- Farina L., Rinaldi S., Positive Linear Systems; Theory and Applications, J. Wiley, New York 2000.
- Gałkowski K., Kummert A., Fractional polynomials and nD systems. Proc IEEE Int. Symp. Circuits and Systems, ISCAS’2005, Kobe, Japan, 2005, CD-ROM.
- Kaczorek T., Positive 1D and 2D Systems, Springer-Verlag, London 2002.
- Kaczorek T., Reachability and controllability to zero of positive fractional discrete-time systems. Machine Intelligence and Robotics Control, 2007, vol. 6, no. 4. (in Press)
- Kaczorek T., Reachability and controllability to zero of cone fractional linear systems, Archives of Control Scienes, 2007, vol. 17, no. 3, pp. 357-367.
- Kaczorek T., Choice of the forms of Lyapunov functions for positive 2D Roesser model, Intern. J. Applied Math. and Comp. Scienes, 2007, vol. 17, no. 4, pp. 471-475.
- Kaczorek T., Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal of Automation and System Engineering, 2008, (in Press).
- Kaczorek T., Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci., 2008, vol. 18, no. 2 (in Press).
- Kaczorek T., Fractional 2D linear systems. Journal of Automation, Mobile Robotics and Intelligent Systems, 2008, vol.2, no.2.
- Kaczorek T., Positive different orders fractional 2D linear systems. Acta Mechanica et Automatica, 2008, (Submitted).
- Kaczorek T., Asymptotic stability of positive 1D and 2D linear systems, Proc. of National Conference of Automation, 2008, (in Press).
- Kaczorek T., LMI approach to stability of 2D positive systems with delays. Multidimensional Systems and Signal Processing, 2008, vol. 18, no. 3.
- Klamka J., Positive controllability of positive systems, Proc. of American Control Conference, ACC-2002, Anchorage, 2002, (CD-ROM).
- Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differenctial Equations. Willey, New York 1993.
- Nishimoto K., Fractional Calculus. Koriama: Decartess Press, 1984.
- Oldham K. B., Spanier J., The Fractional Calculus. New York: Academmic Press, 1974.
- Ortigueira M. D., Fractional discrete-time linear systems, Proc. of the IEE-ICASSP 97, Munich, Germany, IEEE, New York, 1997, vol. 3, pp. 2241-2244.
- Ostalczyk P., The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst, Sci. 2000, vol. 31, no. 12, pp. 551-1561.
- Oustalup A., Commande CRONE. Paris, Hermés 1993.
- Podlubny I., Fractional Differential Equations. San Diego: Academic Press 1999.
- Sierociuk D. Estimation and control of fractional discrete-time systems described by state equations, PhD thesis, Warsaw University of Technology 2007 (in Press).
- Sierociuk D., Dzieliński D., Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci., 2006, vol. 16, no. 1, pp. 129-140.
- Vinagre M., Feliu V., Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV, 2002, pp. 214-239.
- Twardy M., An LMI approach to checking stability of 2D positive systems, Bull. Pol. Acad. Techn. Sci. 2007, vol. 55,no.4, pp. 379-383.
- Twardy M., On the alternative stability criteria for positive systems, Bull. Pol. Acad. Techn. Sci. 2007, vol. 55, no.4, pp. 385-393.