A System and Methodology for Non-Contact Measurement of a Wheel Speed: a Case Study on Cardio Machines

eng Article in English DOI: 10.14313/PAR_254/55

send Marcel Luzar *, Kacper Ostrowski **, Józef Korbicz **, Rafał Kasperowicz ***, Mateusz Semegen *** * State University of Applied Sciences in Głogów, P. Skargi Street 5, 67-200 Głogów ** University of Zielona Góra, Institute of Control and Computation Engineering, Podgórna Street 50, 65-246 Zielona Góra, Poland *** Heavy Kinematic Machines Sp. z o.o., Komorowo 4, 64-200 Komorowo, Poland

Download Article

Abstract

In this study, a novel approach for measuring the velocity of a wheel is proposed. The paper specifically focuses on determining wheel dimensions such as radius, diameter, or circumference in order to calculate speed. The proposed algorithm can be used where the exact dimension of the wheel is unknown or difficult to measure. This article presents the use of the proposed solution for measuring the speed of rollers that move the belt on a training treadmill. The originality of approach presented in this paper is confirmed by patent number WO2022089764A1.

Keywords

data acquisition system, measurements, optoelectronic sensor

System i bezkontaktowa metoda mierzenia prędkości koła: przykład z wykorzystaniem bieżni do ćwiczeń

Streszczenie

W artykule zaproponowano innowacyjne podejście do mierzenia prędkości koła. W tym celu zaproponowana metoda jest w stanie automatycznie wyznaczyć wymiary koła, takie jak promień, średnica i obwód. Dlatego to podejście znajduje zastosowanie, tam gdzie zmierzenie tych fizycznych parametrów jest trudne lub niemożliwe. W celu weryfikacji efektywności zaproponowanego rozwiązania, przeprowadzono praktyczny eksperyment z wykorzystaniem bieżni treningowej, której taśma jest przesuwana przy pomocy kół pasowych. Oryginalność przedstawionej metody potwierdzona jest przyznaniem patentu o numerze WO2022089764A1.

Słowa kluczowe

akwizycja danych pomiarowych, czujnik optoelektroniczny, pomiary

Bibliography

  1. Whitman A., Clayton G., Ashrafiuon H., Prediction of wheel slipping limits for mobile robots, “Journal of Dynamic Systems, Measurement, and Control”, Vol. 141, No. 4, 2019, DOI: 10.1115/1.4041664.
  2. Szolc T., Selected problems of rotating machinery dynamics, “Bulletin of the Polish Academy of Sciences Technical Sciences”, Vol. 71, No. 6, 2023, DOI: 10.24425/bpasts.2023.148442.
  3. Qiu H., Wei Y., Zhao X.F., Yang C., Yi R., Research on the influence of rotational speed on the performance of high-speed permanent-magnet generator, “Archives of Electrical Engineering”, Vol. 68, No. 1, 2019, 77–90, DOI: 10.24425/aee.2019.125981.
  4. Foster D.A., Developments in wheel speed sensing, [In:] SAE International Congress and Exposition, SAE International, 1988, DOI: 10.4271/880325.
  5. Hainz S., de la Torre E., Güttinger J., Comparison of magnetic field sensor technologies for the use in wheel speed sensors, [In:] 2019 IEEE International Conference on Industrial Technology (ICIT), IEEE, 2019, 727–731, DOI: 10.1109/ICIT.2019.8755074.
  6. Gao J., Petovello M., Cannon M., Development of Precise GPS/INS/Wheel Speed Sensor/Yaw Rate Sensor Integrated Vehicular Positioning System, Proceedings of the 2006 National Technical Meeting of The Institute of Navigation, 2006, 780–792.
  7. Berntorp K., Joint Wheel-Slip and Vehicle-Motion Estimation Based on Inertial, GPS, and Wheel-Speed Sensors, “IEEE Transactions on Control Systems Technology”, Vol. 24, No. 3, 2015, 1020–1027, DOI: 10.1109/TCST.2015.2470636.
  8. Liu Z., Liu X., Li K., Deeper exercise monitoring for smart gym using fused RFID and CV data, [In:] IEEE INFOCOM 2020 – IEEE Conference on Computer Communications. IEEE, 2020, 11–19, DOI: 10.1109/INFOCOM41043.2020.9155360.
  9. Luzar M., Czajkowski A., Kasperowicz R., Rot M., Semegen M., Korbicz J., Sensor-based weightlifting workout assisting system design and its practical implementation, “Journal of Sensors”, 2019, DOI: 10.1155/2019/1787351.
  10. Li G.-Y., Li J., Li Z.-J., Zhang Y.-P., Zhang X., Wang Z.-J., Han W.-P., Sun B., Long Y.-Z., Zhang H.-D., Hierarchical PVDF-HFP/ZnO composite nanofiber – based highly sensitive piezoelectric sensor for wireless workout monitoring, “Advanced Composites and Hybrid Materials”, Vol. 5, No. 2, 2022, 766–775, DOI: 10.1007/s42114-021-00331-z.
  11. Joseph R., Ayyappan M., Shetty T., Gaonkar G., Nagpal A., BeFit – a real-time workout analyzer, [In:] Sentimental Analysis and Deep Learning: Proceedings of ICSADL, Springer, 2022, 303–318, DOI: 10.1007/978-981-16-5157-1_24.
  12. Hardy S., Dutz T., Wiemeyer J., Göbel S., Steinmetz R., Framework for personalized and adaptive game-based training programs in health sport, “Multimedia Tools and Applications”, Vol. 74, 2015, 5289–5311, DOI: 10.1007/s11042-014-2009-z.
  13. Thompson W.R., Worldwide survey of fitness trends for 2019, “ACSM’s Health & Fitness Journal”, Vol. 22, No. 6, 2018, 10–17, DOI: 10.1249/FIT.0000000000000438.
  14. Semegen M., Rot M., Ostrowski K., Kasperowicz R., System and method for measuring speed, International Patent no: WO2022089764A1.
  15. Luzar M., Witczak M., Fault-tolerant control and diagnosis for LPV system with H-infinity virtual sensor, 3rd International Conference of Control and Fault-Tolerant Systems (SysTol), 2016, 825-830, DOI: 10.1109/SYSTOL.2016.7739849.