Cross-National Comparison of Technology Innovation Capabilities in Automation and Robotics

eng Article in English DOI: 10.14313/PAR_253/5

send Ewa Chodakowska , Andrzej Polecki Faculty of Engineering Management, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland

Download Article

Abstract

In today’s dynamic and global economic environment, technological innovations are a key determinant of international competitiveness. In the field of automation and robotics, the development of modern technologies is of particular significance, influencing not only industrial progress but also social aspects. Automation and robotics play a crucial role in the concept of modern industry, contributing to the creation of more sustainable, flexible, and human-centric production systems. The article aims to conduct an in-depth analysis of the patent activity in automation and robotics in Europe. Patent documentation serves as a source of knowledge about the directions of research, inventive activities, and consequently, the innovative and competitive potential of the economy. The number of patents over time reflects the dynamics of a country’s technological development. The article discusses the use of patent databases to evaluate a country’s innovation in automation and robotics. The conducted analysis of data on European countries enabled the identification of trends based on the International Patent Classification and specialisation from a geographical perspective using revealed comparative technological advantage. The European countries were classified using cluster analysis, demonstrating the diversity, and identifying leaders in each group.

Keywords

automatization, EU, future industry, innovation, patent, robotisation

Porównanie krajów pod względem zdolności innowacyjnych w obszarze automatyki i robotyki

Streszczenie

W dzisiejszym dynamicznym i globalnym środowisku gospodarczym innowacje technologiczne są kluczowym wyznacznikiem międzynarodowej konkurencyjności. W dziedzinie automatyki i robotyki szczególne znaczenie ma rozwój nowoczesnych technologii, które wpływają nie tylko na postęp przemysłowy, ale także na aspekty społeczne. Automatyka i robotyka odgrywają kluczową rolę w koncepcji nowoczesnego przemysłu, przyczyniając się do tworzenia bardziej zrównoważonych, elastycznych i skoncentrowanych na człowieku systemów produkcyjnych. Artykuł ma na celu pogłębioną analizę aktywności patentowej w dziedzinie automatyki i robotyki w Europie. Dokumentacja patentowa jest źródłem wiedzy o kierunkach badań, działalności wynalazczej, a co za tym idzie, potencjale innowacyjnym i konkurencyjnym gospodarki. Liczba patentów w czasie odzwierciedla dynamikę rozwoju technologicznego kraju. W artykule przedstawiono dotychczasowe wykorzystanie baz patentowych do oceny innowacyjności krajów, w tym w automatyce i robotyce. Przeprowadzona analiza danych dotyczących krajów europejskich pozwoliła na identyfikację trendów w oparciu o Międzynarodową Klasyfikację Patentową, a także specjalizacji z perspektywy geograficznej za pomocą wskaźników ujawnionej komparatywnej przewagi technologicznej. Kraje europejskie sklasyfikowano za pomocą analizy skupień, wykazując różnorodność i identyfikując liderów w każdej grupie.

Słowa kluczowe

automatyzacja, innowacyjność, patent, przemysł przyszłości, robotyzacja, Unia Europejska

Bibliography

  1.  Ponta L., Puliga G., Manzini R., A measure of innovation performance: the Innovation Patent Index, “Management Decision”, Vol. 59, No. 13, 2021, 73−98, DOI: 10.1108/MD-05-2020-0545.
  2. Gazni A., The growing number of patent citations to sci entific Papers: Changes in the world, nations, and fields, “Technology in Society”, Vol. 62, 2020, DOI: 10.1016/j.techsoc.2020.101276.
  3. Nazarko J. (red.), Podlaska strategia rozwoju nanotech nologii do 2020 roku. Przełomowa wizja regionu, Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2013, [https://pbc.biaman.pl/dlibra/publication/31469/edi tion/30265/content].
  4. Dehghani M., Mashatan A., Kennedy R.W., Innovation within networks – patent strategies for blockchain technol ogy, “Journal of Business & Industrial Marketing”, Vol. 36, No. 12, 2021, 2113−2125, DOI: 10.1108/JBIM-05-2019-0236.
  5. Mora-Apablaza L., Navarrete C., Patents as indicators of the technological position of countries on a global level?, “Scientometrics”, Vol. 127, No. 3, 2022, 1233–1246, DOI: 10.1007/s11192-022-04268-y.
  6. Nazarko J., Kształtowanie polityki proinnowacyjnej regionu np. foresightu technologicznego <>, „Optimum. Studia Ekonomiczne”, Vol. 2, No. 50, 2011, 241−251.
  7. Clarke N.S., Jürgens B., Herrero-Solana V., Blockchain patent landscaping: An expert based methodology and search query, “World Patent Information”, Vol. 61, 2020, DOI: 10.1016/j.wpi.2020.101964.
  8. Wu L., Zhu H., Chen H., Roco M.C., Comparing nanotech nology landscapes in the US and China: a patent analysis perspective, “Journal of Nanoparticle Research”, Vol. 21, No. 8, 2019, DOI: 10.1007/s11051-019-4608-0.
  9. Gadiya Y., Gribbon P., Hofmann-Apitius M., Zaliani A., Pharmaceutical patent landscaping: A novel approach to understand patents from the drug discovery perspective, “Artificial Intelligence in the Life Sciences”, Vol. 3, 2023, DOI: 10.1016/j.ailsci.2023.100069.
  10. Lindman Å, Söderholm P., Wind energy and green econ omy in Europe: Measuring policy-induced innovation using patent data, “Applied Energy”, Vol. 179, 2016, 1351−1359, DOI: 10.1016/j.apenergy.2015.10.128.
  11. De Paulo A.F., Graeff C.F.D.O., Porto G.S., Uncovering emerging photovoltaic technologies based on patent analysis, “World Patent Information”, Vol. 73, 2023, DOI: 10.1016/j.wpi.2023.102181.
  12. Hu F., Mou S., Wei S., Qiu L., Hu H., Zhou H., Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents, “Energy Strategy Reviews”, Vol. 51, 2024, DOI: 10.1016/j.esr.2024.101309.
  13. Arsad S.R., Ker P.J., Hannan M.A., Tang S.G.H., et al., Patent landscape review of hydrogen production methods: Assessing technological updates and innovations, “Inter national Journal of Hydrogen Energy”, Vol. 50, 2024, 447−472, DOI: 10.1016/j.ijhydene.2023.09.085.
  14. Iqbal Z., Sadaf S., Artificial Intelligence/Machine Learning-based Innovations – A Review of Patent Eligibility Standards, Policies, Open Issues and Guiding Framework, “Expert Systems with Applications”, Vol. 239, 2024, DOI: 10.1016/j.eswa.2023.121819.
  15. Liu Y., Alias A.H.B., Haron N.A., Bakar N.A., Wang H., Technology status tracing and trends in construction robot ics: A patent analysis, “World Patent Information”, Vol. 76, 2024, DOI: 10.1016/j.wpi.2023.102259
  16. Wang X., Daim T., Huang L., Li R., Shaikh R., Kassi D.F., Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technol ogy, “Technology in Society”, Vol. 71, 2022, DOI: 10.1016/j.techsoc.2022.102076.
  17. Ardito L., D’Adda D., Petruzzelli A.M., Mapping innova tion dynamics in the Internet of Things domain: Evidence from patent analysis, “Technological Forecasting and Social Change”, Vol. 136, 2018, 317−330, DOI: 10.1016/j.techfore.2017.04.022.
  18. Jiang M., Yang S., Gao Q., Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow, “Journal of Informetrics”, Vol. 18, No. 1, 2024, DOI: 10.1016/j.joi.2023.101483.
  19. Gładysz B., Corti D., Montini E., Forecasting the Develop ment of RFID Technology, “Management and Production Engineering Review”, 2021, 38−47, DOI: 10.24425/MPER.2021.136870.
  20. Nazarko Ł., Istota foresightu i jego percepcja w Polsce, „Optimum. Studia Ekonomiczne”, No. 4, 2011, 224−233.
  21. Ejdys J., Nazarko Ł., Foresight gospodarczy – instrumentem orientacji na przyszłość, „Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu”, No. 340, 2014, 651−664, 10.15611/pn.2014.340.58.
  22. Glińska U., Kononiuk A., Nazarko Ł., Przegląd projektów foresightu branżowego w Polsce, „Nauka i Szkolnictwo Wyższe”, Vol. 2, 2008, 60−73.
  23. Zieliński C., Robotyka: techniki, funkcje, rola społeczna. Cz. 3. Roboty a problemy społeczne, „Pomiary Automatyka Robotyka”, Vol. 27, No. 2, 2023, 5−20, DOI: 10.14313/PAR_248/5.
  24. Mytareva L.A., Gorshkova N.V., Shkarupa E.A., Yalmaev R.A., The Cyber Economy and Digitization: Impacts on the Qual ity of Life. [In:] Filippov V.M., Chursin A.A., Ragulina J.V., Popkova E.G. (eds), The Cyber Economy. Contributions to Economics. 2019, Springer, Cham. DOI: 10.1007/978-3-030-31566-5_3.
  25. Gao Z., Shadow of Technology: Robotics Development and Regional Economic Inequality, “Journal of Knowledge Economy”, 2024, DOI: 10.1007/s13132-024-01856-6.
  26. Pollak A., Hilarowicz A., Walczak M., Gąsiorek D., A Framework of Action for Implementation of Industry 4.0. an Empirically Based Research, “Sustainability”, Vol. 12, No. 14, 2020, DOI: 10.3390/su12145789.
  27. Klimasara W., Pilat Z., Urządzenie do wspomagania reha bilitacji ruchowej, Patent 212834.
  28. Nazarko Ł., Responsible Research and Innovation in Enter prises: Benefits, Barriers and the Problem of Assessment, “Journal of Open Innovation: Technology, Market, and Complexity”, Vol. 6, No. 1, 2020, DOI: 10.3390/joitmc6010012.
  29. Nazarko Ł., Melnikas B., Operationalising Responsible Research and Innovation – tools for enterprises, “Engineering Management in Production and Services”, Vol. 11, No. 3, 2019, 21–28, DOI: 10.2478/emj-2019-0017.
  30. Nazarko Ł., Responsible Research and Innovation in Indus try: From Ethical Acceptability to Social Desirability, [In:] “Corporate Social Responsibility in the Manufacturing and Services Sectors”, Golińska-Dawson P., Spychała M. (eds.), 2019, 127−138, DOI: 10.1007/978-3-642-33851-9_7.
  31. Marino A., Pariso P., Comparing European countries’ performances in the transition towards the Circular Economy, “Science of The Total Environment”, Vol. 729, 2020, DOI: 10.1016/j.scitotenv.2020.138142.
  32. Nazarko J., Glińska E., Glińska U., Ejdys J., Kierunki rozwoju nanotechnologii w województwie podlaskim. Mapy. Marszruty. Trendy, Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2013, [https://pbc.biaman.pl/dlibra/publication/27112/edi tion/25904/content].
  33. Chodakowska E., Nazarko J., Hybrid Rough Set and Data Envelopment Analysis Approach to Technology Prioritisa tion, “Technological and Economic Development of Econ omy”, Vol. 26, Np. 4, 2020, 885–908, DOI: 10.3846/tede.2020.12538.
  34. Scherngell T., Schwegmann K., Zahradnik G., The geo graphical dynamics of global R&D collaboration networks in robotics: Evidence from co-patenting activities across urban areas worldwide, “PLoS ONE”, Vol. 18, No. 4, 2023, DOI: 10.1371/journal.pone.0281353.
  35. Halásková M., Bednář P., Effect of public and private sector R&D indicators on innovation performance and competi tiveness: Case of the western European NUTS 2 regions, “Journal of Competitiveness”, Vol. 15, No. 3, 2023, 104–121, DOI: 10.7441/joc.2023.03.06.
  36. Montresor S., Quatraro F., Regional Branching and Key Enabling Technologies: Evidence from European Patent Data, “Economic Geography”, Vol. 93, No. 4, 2017, 367–396, DOI: 10.1080/00130095.2017.1326810.
  37. Klincewicz K., Robotics in the Context of Industry 4.0: Patenting Activities in Poland and Their Comparison with Global Developments, “Problemy Zarządzania”, Vol. 17, No. 2, 2019, 53–95, DOI: 10.7172/1644-9584.82.3.
  38. Dritsaki M., Dritsaki C., Tsianaka E., The effect of macroeconomic and environmental factors on innovation in EU member countries, “Journal of Infrastructure, Policy and Development”, Vol. 7, No. 3, 2023, DOI: 10.24294/jipd.v7i3.2560.
  39. Furman J.L., Porter M.E., Stern S., The determinants of national innovative capacity, “Research Policy”, Vol. 31, No. 6, 2002, 899–933, DOI: 10.1016/S0048-7333(01)00152-4.
  40. Nazarko J., Chodakowska E., Nazarko Ł., Evaluating the Transition of the European Union Member States towards a Circular Economy, “Energies”, Vol. 15, No. 11, 2022, DOI: 10.3390/en15113924.
  41. Alola A.A., Bekun F.V., Obekra H.O., Adebayo T.S., Explaining the environmental efficiency capability of energy mix innovation among the Nordic countries, “Energy Reports”, Vol. 11, 2024, 233–239, DOI: 10.1016/j.egyr.2023.11.051.
  42. Baumann M., Domnik T., Haase M., Wulf C., Emmerich P., Rösh C., Zapp. P., Naegler T., Weil M., Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy, “Technological Forecasting and Social Change”, Vol. 165, 2021, DOI: 10.1016/j.techfore.2020.120505.
  43. Grosse Ruse-Khan H., Metzger A. (eds.), Intellectual Property Ordering Beyond Borders, Cambridge University Press, 2022, DOI: 10.1017/9781009071338.
  44. Rusek K., Kleszcz A., Cabellos-Aparicio A., Bayesian inference of spatial and temporal relations in AI patents for EU countries, “Scientometrics”, Vol. 128, No. 6, 2023, 3313–3335, DOI: 10.1007/s11192-023-04699-1.
  45. Porter A.L., Markley M., Snead R., Newman N.C. Twenty years of US nanopatenting: Maintenance renewal scoring as an indicator of patent value, “World Patent Information”, Vol. 73, 2023, DOI: 10.1016/j.wpi.2023.102178.
  46. Amoroso S., Aristodemou L., Criscuolo C., Dechezleprete A., Dernis H., Grassano N., Moussiegt L., Napolitano L., Nawa D., Squicciarini, M. and Tuebke, A., World Corporate Top R&D investors: Paving the way for climate neutrality, Publications Office of the European Union, Luxembourg, 2021, DOI: 10.2760/49552
  47. Santarelli E., Staccioli J., Vivarelli M., Automation and Ewa Chodakowska, Andrzej Polecki related technologies: a mapping of the new knowledge base, “Journal of Technology Transfer”, Vol. 48, 2013, 779–813, DOI: 10.1007/s10961-021-09914-w.
  48. Goeldner M., Herstatt C., Tietze F., The emergence of care robotics – A patent and publication analysis, “Technological Forecasting and Social Change”, Vol. 92, 2015, 115–131, DOI: 10.1016/j.techfore.2014.09.005.
  49. Fang X., Xu H., Chen B., Fang K., Li G., Mao Z., Zheng L., Jiang J., Analysis of Swarm Robotics Cooperative Control Strategy from the Patent Perspective, [In:] 2022 Interna tional Symposium on Intelligent Robotics and Systems (ISoIRS), 2022, 159–164, DOI: 10.1109/ISoIRS57349.2022.00039.
  50. Kreuchauff F., Korzinov V., A patent search strategy based on machine learning for the emerging field of service robo tics, “Scientometrics”, Vol. 111, 2017, 743–772, DOI: 10.1007/s11192-017-2268-3.
  51. Kong D., Zhou Y., Liu Y., Xue L., Using the data mining method to assess the innovation gap: A case of industrial robotics in a catching-up country, “Technological Forecasting and Social Change”, Vol. 119, 2017, 80–97, DOI: 10.1016/j.techfore.2017.02.035.
  52. Qiu Z., Wang Z., Technology Forecasting Based on Seman tic and Citation Analysis of Patents: A Case of Robotics Domain, “IEEE Transactions on Engineering Management”, Vol. 69, No. 4, 2022, 1216–1236, DOI: 10.1109/TEM.2020.2978849.
  53. Borregan-Alvarado J., Alvarez-Meaza I., Cilleruelo-Car rasco E., Garechana-Anacabe G., Mapping Technological Profile of Collaborative Robots by Patent Analysis, “International Journal of Human-Computer Interaction”, Vol. 39, No. 20, 2023, 3920–3935, DOI: 10.1080/10447318.2022.2108640.
  54. Cséfalvay Z., Gkotsis P., Robotisation race in Europe: the robotisation chain approach, “Economics of Innovation and New Technology”, Vol. 31, No. 8, 2022, 693–710, DOI: 10.1080/10438599.2020.1849968.
  55. Ding H., Cai C., Patent Analysis and Structural Synthesis of Epicyclic Gear Trains Used I Automatic Transmissions, “Applied Sciences”, Vol. 10, No. 1, 2019, DOI: 10.3390/app10010082.
  56. Zhen-guo L., Gong-chang R., Yue-xin Y., Le W., Appli cation and research of patent evasion design in automatic connection device, “Journal of Physics: Conference Series”, Vol. 1948, 2021, DOI: 10.1088/1742-6596/1948/1/012094.
  57. Hu Z., Zhou X., Lin A., Evaluation and identification of potential high-value patents in the field of integrated circuits using a multidimensional patent indicators pre-screening strategy and machine learning approaches, “Journal of Informetrics”, Vol. 17, No. 2, 2023, DOI: 10.1016/j.joi.2023.101406.
  58. Saniuk S., Grabowska S., Straka M., Identification of Social and Economic Expectations: Contextual Reasons for the Transformation Process of Industry 4.0 into the Indu stry 5.0 Concept, “Sustainability”, Vol. 14, No. 3, 2022, DOI: 10.3390/su14031391.
  59. Lai M.-L., Using Patent Data to Evaluate the Knowledge Dissemination of the Offshore Wind Power Industry, “IEEE Transactions on Engineering Management”, Vol. 71, 2023, 7128–7133, DOI: 10.1109/TEM.2023.3277481.
  60. Svensson R., Patent value indicators and technological innovation, “Empirical Economics”, Vol. 62, No. 4, 2022, 1715–1742, DOI: 10.1007/s00181-021-02082-8.
  61. Tümer A.E., Kabaklarlı E., Forecasting Gross Domestic Product (GDP) of OECD Countries Based on Digital Trans formation Indicators: ANN Approach, “EDPACS”, Vol. 69, No. 1, 2024, 88–102, DOI: 10.1080/07366981.2024.2312015.
  62. Hamzah A.S.S.S.A., Saipan@Saipol H.F., Nordin S.Z., Shaffiei Z.A., Ohshima N., Adopting Text Mining for Patent Analysis to Determine the Attribute and Segment in Automotive Industries, “Journal of Advanced Research in Applied Sciences and Engineering Technology”, Vol. 37, No. 2, 2024, 94–103, DOI: 10.37934/araset.37.2.94103.
  63. Mann K., Puttmann L., Benign Effects of Automation: New Evidence from Patent Texts, “The Review of Econo mics and Statistics”, Vol. 105, No. 3, 2023, 562–579, DOI: 10.1162/rest_a_01083.
  64. Chen P.P.J., Trappey A.I.C., Lin B.H.L., Trappey C.V., Patent Analytics of Robotics Technology for Intelligent Manufacturing in the Semiconductor Industry, [In:] 2018 IEEE 22nd International Conference on Computer Suppor ted Cooperative Work in Design (CSCWD), 2018, 213–217, DOI: 10.1109/CSCWD.2018.8465276