Wideband AC Voltage Standards

eng Article in English DOI: 10.14313/PAR_252/81

send Krzysztof Kubiczek , Marian Kampik , Michał Grzenik , Krzysztof Musioł , Anna Piaskowy Politechnika Śląska, Wydział Elektryczny, Katedra Metrologii, Elektroniki i Automatyki, ul. Akademicka 10, 44-100 Gliwice

Download Article

Abstract

This article presents a critical review and comparison of constructions and metrological properties of contemporary wideband standards for AC voltage. It focuses on selected thermal voltage converters (TVCs) used in alternating current-direct current (AC-DC) transfer voltage standards and for the most precise measurements of AC voltages up to approximately 100 MHz. These devices serve as primary AC voltage standards at National Measurement Institutes (NMIs).

Keywords

ac-dc transfer difference, calorimetric thermal voltage converter, national metrology institutes, precision metrology, quantum voltage standards, thermal voltage standards

Wzorce napięcia przemiennego o szerokim paśmie częstotliwości

Streszczenie

W artykule przedstawiono porównanie konstrukcji i właściwości metrologicznych współczesnych wzorców napięcia przemiennego pracujących w szerokim zakresie częstotliwości. Wzorce te stosowane są w transferze AC-DC, będącym obecnie najdokładniejszym sposobem wyznaczania wartości skutecznej napięcia przemiennego w paśmie częstotliwości od kilkudziesięciu kHz aż do ponad 100 MHz. Urządzenia te pełnią rolę pierwotnych wzorców napięcia przemiennego w Narodowych Instytutach Metrologicznych (NMIs) w paśmie wysokich częstotliwości.

Słowa kluczowe

kalorymetryczny przetwornik napięcia, krajowe instytuty metrologiczne, termiczny przetwornik napięcia, transfer AC-DC, wartość skuteczna napięcia przemiennego

Bibliography

  1. Alam S., Jahangir M.A., Aziz A., A Compact Model for Superconductor- Insulator-Superconductor (SIS) Josephson Junctions, “IEEE Electron Device Letters”, Vol. 41, No. 8, 2020, 1249–1252, DOI: 10.1109/LED.2020.3002448.
  2. Josephson B.D., Possible New Effects in Superconductive Tunnelling, “Physics Letters”, Vol. 1, No. 7, 1962, 251–253, DOI: 10.1016/0031-9163(62)91369-0.
  3. Van Mullem C., Janssen W.J.G.D., De Vreede J.P.M., Evaluation of the calculable high frequency AC-DC standard, “IEEE Transactions on Instrumentation and Measurement”, Vol. 46, No. 2, 1997, 361–364, DOI: 10.1109/19.571856.
  4. Kohlmann J., Kieler O., Tian H., Wendisch R., Egeling B., Behr R., Development and Fabrication of Improved Josephson Series Arrays with NbSi Barrier for AC Voltage Standards, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, DOI: 10.1109/CPEM.2018.8500887.
  5. Overney F., Rufenacht A., Braun J.P., Jeanneret B., Wright P.S., Characterization of Metrological Grade Analog-to-Digital Converters Using a Programmable Josephson Voltage Standard, “IEEE Transactions on Instrumentation and Measurement”, Vol. 60, No. 7, 2011, 2172–2177, DOI: 10.1109/TIM.2011.2113950.
  6. Kohlmann J., Behr R., Development of Josephson Voltage Standards. In Superconductivity – Theory and Applications, IntechOpen, 2011, DOI: 10.5772/17031.
  7. Benz S.P., Hamilton C.A., Burroughs C.J., Harvey T.E., Christian L.A., Stable 1 Volt Programmable Voltage Standard. “Applied Physics Letters”, Vol. 71, No. 13, 1997, 1866–1868, DOI: 10.1063/1.120189.
  8. Benz S.P., Superconductor-Normal-Superconductor Junctions for Programmable Voltage Standards. “Applied Physics Letters”, Vol. 67, No. 18, 1995, 2714–2716, DOI: 10.1063/1.114302.
  9. Trinchera B., Serazio D., Durandetto P., Oberto L., Fasolo L., Development of a PJVS System for Quantum-Based Sampled Power Measurements. “Measurement” Vol. 219, 2023, DOI: 10.1016/j.measurement.2023.113275.
  10. Burroughs C.J., Rufenacht A., Benz S.P., Dresselhaus P.D., Systematic error analysis of stepwise approximated AC waveforms generated by a Programmable Josephson Voltage Standard, 2008 Conference on Precision Electromagnetic Measurements Digest, Broomfield, CO, USA, 2008, 72–73, DOI: 10.1109/CPEM.2008.4574658.
  11. Chevtchenko O.A. et al., Realization of a quantum standard for AC voltage: overview of a European research project, “IEEE Transactions on Instrumentation and Measurement”, Vol. 54, No. 2, 2005, 628-631, DOI: 10.1109/TIM.2004.843078.
  12. Benz S.P., Waltman S.B., Fox A.E., One-Volt Josephson Arbitrary Waveform Synthesizer, “IEEE Transactions on Applied Superconductivity”, Vol. 25, No. 1, 2015, DOI: 10.1109/TASC.2014.2357760.
  13. Behr R., Palafox L., An AC Quantum Voltmeter for Frequencies up to 100 kHz Using Sub-Sampling. “Metrologia”, Vol. 58, No. 2, DOI: 10.1088/1681-7575/abe453.
  14. Flowers-Jacobs N.E., Rüfenacht A., Fox A.E., Dresselhaus P.D., Benz S.P., Calibration of an AC Voltage Source Using a Josephson Arbitrary Waveform Synthesizer at 4 V, 2020 Conference on Precision Electromagnetic Measurements (CPEM), Denver, CO, USA, 2020, DOI: 10.1109/CPEM49742.2020.9191787.
  15. Kieler O.F., Iuzzolino R., Kohlmann J., Sub-μm SNS Josephson Junction Arrays for the Josephson Arbitrary Waveform Synthesizer. “IEEE Transactions on Applied Superconductivity”, Vol. 19, 2009, 230–233, DOI: 10.1109/TASC.2009.2019283.
  16. Kohlmann J., Kieler O., Iuzzolino R., Egeling B., Palafox L., Muller F., SNS Josephson junction series arrays for the Josephson Arbitrary Waveform Synthesizer, 2008 Conference on Precision Electromagnetic Measurements Digest, Broomfield, CO, USA, 2008, 584–585, DOI: 10.1109/CPEM.2008.4574914.
  17. Babenko A.A., Flowers-Jacobs N.E., Lasser G., Brevik J.A., Fox A.E., Dresselhaus P.D., Popovic Z., Benz S.P., A Microwave Quantum-Defined Millivolt Source, “IEEE Transactions on Microwave Theory and Techniques”, Vol. 69, No. 12, 2021, 5404–5416, DOI: 10.1109/TMTT.2021.3121425.
  18. Durandetto P., Sosso A., Using a Josephson Junction as an Effective On-Chip Temperature Sensor. “Superconductor Science and Technology”, Vol. 34, No. 4, 2021, DOI: 10.1088/1361-6668/abdcc4.
  19. Sosso A., Durandetto P., Determination of the Temperature vs Power Dynamic Behavior of a Cryocooler via Two Independent Methods in Time and Frequency Domain. “MethodsX”, Vol. 5, 2018, 841–847, DOI: 10.1016/j.mex.2018.06.013.
  20. Bauer S., Behr R., Herick J., Kieler O., Kraus M., Tian H., Pimsut Y., Palafox L., Josephson Voltage Standards as Toolkit for Precision Metrological Applications at PTB. “Measurement Science and Technology”, Vol. 34, No. 3, 2023, DOI: 10.1088/1361-6501/aca5a5.
  21. Flowers-Jacobs N.E., Fox A.E., Dresselhaus P.D., Schwall R.E., Benz S.P., Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers, “IEEE Transactions on Applied Superconductivity”, Vol. 26, No. 6, 2016, DOI: 10.1109/TASC.2016.2532798.
  22. Bakshi U.A., Bakshi U.V., Basic Electrical Engineering; Technical Publications Pune, 2009.
  23. Zubov V., Shal’nov V., Worked Examples in Physics; Kent: Elsevier Science, 2013.
  24. Kampik M., Measurement System for Investigation and Calibration of Digital Sources of Low-Frequency AC Voltage. “Przegląd Elektrotechniczny”, Vol. 89, No. 1a, 2013, 75–77.
  25. Shi Z., Zhang J., Pan X., Jia Z., Song Y., Ma X., He Q., AC-DC Transfer System for Ultra-low Frequency Voltage, 2020 Conference on Precision Electromagnetic Measurements (CPEM), Denver, CO, USA, 2020, DOI: 10.1109/CPEM49742.2020.9191901.
  26. Shi Z., Wang Z., Zhang J., Pan X., Wang L., Song Y., AC-DC Transfer and Verification of Ultra-Low Frequency Voltage From 0.1 to 10 Hz, “IEEE Transactions on Instrumentation and Measurement”, Vol. 72, 2023, DOI: 10.1109/TIM.2023.3249226.
  27. Funck T., Kampik M., Kessler E., Klonz M., Laiz H., Lapuh R., Determination of the AC-DC voltage transfer difference of high-voltage transfer standards at low frequencies, “IEEE Transactions on Instrumentation and Measurement”, Vol. 54, No. 2, 2005, 807–809, DOI: 10.1109/TIM.2004.843415.
  28. Kampik M., Grzenik M., Musioł K., Kubiczek K., Skórkowski A., Szutkowski J., Zawadzki P., Interlaboratory Comparison of Thermal AC Voltage Standards. „Measurement Science Review”, Vol. 19, No. 6, 2019, 279–282, DOI: 10.2478/msr-2019-0036.
  29. Grzenik M., Kampik M., Toward Extending the Frequency of the AC-DC Voltage Transfer at Silesian University of Technology up to 10 MHz. “Measurement Automation Monitoring”, Vol. 62, No. 2, 2016, 46–48.
  30. Shan Y., Meng Y.S., Filipski P.S., Evaluation of a Calorimetric Thermal Voltage Converter for RF-DC Difference up to 1 GHz, “IEEE Transactions on Instrumentation and Measurement”, Vol. 63, No. 2, 2014, 467–472, DOI: 10.1109/TIM.2013.2278597.
  31. Grzenik M., Musiol K., Kampik M., Sosso A., Investigation of selected AC voltage generators for high-frequency AC-DC transfer, 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 2017, DOI: 10.1109/I2MTC.2017.7969955.
  32. Halawa M., Al-Rashid N., Performance of Single Junction Thermal Voltage Converter (SJTVC) at 1 MHz via Equivalent Electrical Circuit Simulation, 2010 12th International Conference on Computer Modelling and Simulation, Cambridge, UK, 2010, 631–636, DOI: 10.1109/UKSIM.2010.120.
  33. Kgakatsi T.E., Golovins E., Venter J., ESD Stress Analysis and Suppression in a Single-Junction Thermal Converter. “Advances in Electrical and Electronic Engineering”, Vol. 20, No. 1, 2022, 66–72, DOI: 10.15598/aeee.v20i1.4115.
  34. Grzenik M., Kampik M., Calculable AC Voltage Standards for 10 KHz–1 MHz Frequency Range. “IEEE Transactions on Instrumentation and Measurement”, Vol. 66, No. 6, 2017, 1372–1378, DOI: 10.1109/TIM.2016.2613404.
  35. Kubiczek K., Kampik M., Grzenik M., Analysis of DC Reversal Error of the Calorimetric Thermal Voltage Converter. “Measurement”, Vol. 168, 2021, DOI: 10.1016/j.measurement.2020.108439.
  36. Scarioni L., Klonz M., Laiz H., Kampik M., High-frequency thin-film multijunction thermal converter on a quartz crystal chip, “IEEE Transactions on Instrumentation and Measurement”, Vol. 52, No. 2, 2003, 345–349, DOI: 10.1109/TIM.2003.810011.
  37. Clark R.F., Filipski P.S., Paulusse D.C., Improvements in the NRC AC-DC transfer capabilities, “IEEE Transactions on Instrumentation and Measurement”, Vol. 46, No. 2, 1997, 365–368, DOI: 10.1109/19.571857.
  38. Kinard J.R., Cai T.X., Determination of AC-DC difference in the 0.1–100 MHz frequency range, “IEEE Transactions on Instrumentation and Measurement”, Vol. 38, No. 2, 1989, 360–367, DOI: 10.1109/19.192307.
  39. Nomair M., Harmans K.J.P.M., High accuracy calculable AC-DC transfer standards for the LF-30 MHz frequency range, “IEEE Transactions on Instrumentation and Measurement”, Vol. 38, No. 2, 1989, 342–345, DOI: 10.1109/19.192303.
  40. Kampik M., Grzenik M., Lippert T., Rydler K.E., Tarasso V., Trinchera B., Comparison of a Thermal AC Voltage Standard in the 1–30-MHz Frequency Range, “IEEE Transactions on Instrumentation and Measurement”, Vol. 70, 2021, DOI: 10.1109/TIM.2020.3007296.
  41. Amagai Y., Fujiki H., Shimizume K., Kishino K., Hidaka S., Improvements in the Low-Frequency Characteristic and Sensitivity of a Thin-Film Multijunction Thermal Converter in Vacuum, “IEEE Transactions on Instrumentation and Measurement”, Vol. 64, No. 6, 2015, 1570–1575, DOI: 10.1109/TIM.2014.2385133.
  42. Souza R., Afonso R. Jr, Klonz M., Landim R., New Generation of AC-DC Current Transfer Standards at Inmetro. “Acta IMEKO”, Vo. 1, No. 1, 2012, 65–69, DOI: 10.21014/acta_imeko.v1i1.24.
  43. Laiz H., Klonz M., Kessler E., Kampik M., Lapuh R., Low-frequency AC-DC voltage transfer standards with new high-sensitivity and low-power-coefficient thin-film multijunction thermal converters, “IEEE Transactions on Instrumentation and Measurement”, Vol. 52, No. 2, 2003, 350–354, DOI: 10.1109/TIM.2003.810037.
  44. Lipe T.E., Kinard J.R., Novotny D.B., Sims J.E., Advanced thermal sensors for precision AC voltage metrology, “Sensors”, 2011 IEEE, Limerick, Ireland, 2011, 1716–1719, DOI: 10.1109/ICSENS.2011.6126916.
  45. Lipe T.E., Kinard J.R., Novotny D.B., Sims J.E., Advanced Thermal Sensors for Broadband AC Voltage Metrology. “The Journal of Measurement Science”, Vol. 9, No. 2, 2014, 74–78, DOI: 10.1080/19315775.2014.11721687.
  46. Grzenik M., Kampik M., Determination of AC-DC Transfer Difference of SUT Calculable Thermal Voltage Converters in 1 MHz - 30 MHz Frequency Range, 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 2018, DOI: 10.1109/CPEM.2018.8500985.
  47. Grzenik M., Kampik M., Determination of frequency-independent component of AC-DC transfer difference of SUT’s calculable AC voltage standards, 2018 IEEE International Instrumentation and Measurement Technology Conference (I2 MTC), Houston, TX, USA, 2018, DOI: 10.1109/CPEM.2018.8500985.
  48. Sasaki H., Kasai N., Fujiki H., Shimizume K., Hidaka S., Development of a Thermal Voltage Converter with Calculable High-Frequency Characteristics. “IEEJ Transactions on Electrical and Electronic Engineering”, Vol. 6, No. 4, 2011, 293–298, DOI: 10.1002/tee.20659.