The Measurement Method of a Piston Fall Rate

eng Article in English DOI: 10.14313/PAR_250/65

send Adam Brzozowski *, Roman Szewczyk **, Piotr Gazda ***, Michał Nowicki *** * Central Office of Measures, Elektoralna 2, 00-139 Warsaw ** Łukasiewicz Research Network – Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202; 02-486 Warsaw *** Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Measuring Systems, sw. A. Boboli 8, 02-525 Warsaw

Download Article

Abstract

The accurate determination of the piston fall rate is one of critical parameters in dead weight testers and piston gauges, as it confirms a quality of machining, instrument accuracy class, and long-term stability. This study introduces a method for determining piston fall rate using two triangulating laser distance sensors. This approach offers versatile applicability, in high-precision standards as well as in regular-class instruments, and is robust in accommodating variations in measurement ranges, pressure transmitting mediums, materials of weights, and weight diameters. The method utilizes two laser sensors symmetrically positioned under the primary weight of the piston pressure gauge, allowing for seamless measurements without the need for sensor adjustments. The data collected from these sensors are processed to calculate the average displacement of the primary weight. The method’s effectiveness is demonstrated with high linearity and precision in determining the piston weight fall rate. This approach can lead to improvements in fluid dynamics analysis and metrology of precise pressure balances. The method’s advantages include error mitigation and reduced operator intervention, making it highly suitable for applications requiring accurate piston descent velocity measurements, particularly in older measuring instruments. The establishment of a reference dataset can enhance the accuracy of periodic examinations of piston-cylinder assemblies, thereby reducing costs and improving measurement quality.

Keywords

piston fall rate, piston gauge, piston-cylinder unit, pressure balance

Metoda pomiaru prędkości opadania tłoka

Streszczenie

Prędkość opadania tłoka stanowi jeden z kluczowych parametrów w zespołach pomiarowych ciśnieniomierzy obciążnikowo-tłokowych, ponieważ świadczy o jakości wykonania, klasie dokładności urządzenia oraz rzutuje na stabilność długoterminową. Niniejsza praca przedstawia metodę określania prędkości opadania tłoka za pomocą dwóch triangulacyjnych laserowych czujników przemieszczenia. To podejście cechuje wszechstronna przydatność, zarówno we wzorcach o najwyższej precyzji, jak i w przyrządach roboczych, jak również jest uniwersalne bez względu na zakresy pomiarowe, rodzaje mediów przekazujących ciśnienie, materiały obciążników i ich wymiary. Metoda ta wykorzystuje dwa czujniki laserowe, umieszczone symetrycznie pod obciążnikiem podstawowym ciśnieniomierza, co pozwala na pomiary bez konieczności regulacji ustawienia czujników. Dane zbierane przez te czujniki są przetwarzane w celu obliczenia średniego przesunięcia obciążnika podstawowego, a co za tym idzie tłoka. Skuteczność metody jest potwierdzona wysoką liniowością i precyzją w określaniu prędkości opadania tłoka. Zaletami metody są eliminacja błędów oraz ograniczenie ingerencji operatora, co sprawia, że jest ona szczególnie odpowiednia do zastosowań wymagających dokładnych pomiarów prędkości opadania tłoka, zwłaszcza przy starszych przyrządach pomiarowych.

Słowa kluczowe

ciśnieniomierz obciążnikowo-tłokowy, prędkość opadania tłoka, zespół tłok-cylinder

Bibliography

  1. Simpson D.I., Computerized Techniques for Calibrating Pressure Balances, “Metrologia”, Vol. 30, No. 6, 1994, 655– 658, DOI: 10.1088/0026-1394/30/6/021.
  2. Bermanec L.G., Zvizdic D., Simunovic V., Development of Method for Determination of Pressure Balance Piston fall Rate, “ACTA IMEKO”, Vol. 3, No 2, 2014, 44–47, DOI: 10.21014/acta_imeko.v3i2.105.
  3. Kajikawa H., Ide K., Kobata T., Method for altering deformational characteristics of controlled-clearance piston-cylinders, “Measurement”, Vol. 44, No. 2, 2011, 359–364, DOI: 10.1016/j.measurement.2010.10.011.
  4. Wongthep P., Rabault T., Noguera R., Sarraf C., A new model of fluid flow to determine pressure balance characteristics, “Metrologia”, Vol. 50, No. 2, 2013, 153–157, DOI: 10.1088/0026-1394/50/2/153.
  5. Buonanno G., Dell’Isola M., Maghenzani R., Finite element analysis of pressure distortion coefficient and piston fall rate in a simple pressure balance, “Metrologia”, Vol. 36, No. 6, 1999, DOI: 10.1088/0026-1394/36/6/19.
  6. Yang Y., Driver G.R., Quintavalle J.S., Scherschligt J., Schlatter K., Ricker J.E., Strouse G.F., Olson D.A., Hendricks J.H., An integrated and automated calibration system for pneumatic piston gauges, “Measurement”, Vol. 134, 2019, 1–5, DOI: 10.1016/j.measurement.2018.10.050.
  7. Sharipov F., Yang Y., Ricker J.E., Hendricks J.H., Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross sectional area based on rarefied gas dynamics, “Metrologia”, Vol. 53, No. 5, 2016, 1177–1184, DOI: 10.1088/0026-1394/53/5/1177.
  8. Sabuga W., Sharipov F., Priruenrom T., Determination of the Effective Area of Piston-Cylinder Assemblies Using a Rarefied Gas Flow Model, “PTB Mitteilungen”, Vol. 121, No. 3, 2011, 260–262.
  9. Ega A.V., Samodro R.A., TAC method to overcome the practical difficulty in the calibration of dwt with insensitive piston, “Instrumentasi”, Vol. 43, No. 1, 2019, 11–23, DOI: 10.31153/instrumentasi.v43i1.171.
  10. Wongthep P., Sainoo L., Establishment of Thailand Pressure Standard from 1.5 kpa to 500 mpa, IMEKO 24th TC3, 14th TC5, 6th TC16 and 5th TC22 International Conference, 11–13 October 2022, Cavtat-Dubrovnik, Croatia.
  11. Peggs G.N., Lewis S., The NPL primary pressure balance standard, “Journal of Physics E: Scientific Instruments”, Vol. 10, No. 10, 1977, DOI: 10.1088/0022-3735/10/10/021.
  12. Olson D.A., Gelany S.A., Eltawil A.A., Use of a higher order Heydemann–Welch model to characterize a controlled clearance piston gauge, “Measurement”, Vol. 45, No. 10, 2011, 2469–2471, DOI: 10.1016/j.measurement.2011.10.047.
  13. Kajikawa H., Ide K., Kobata T., Stability of pressure generated by controlled-clearance pressure balance up to 1 GPa, “PTB Mitteilungen”, Vol. 121, No. 3, 2011, 278–280.
  14. Moisoi N., Severn I., Sumner D.R., Direct measurements of pressure-induced distortion in a piston–cylinder using a capacitance technique, “Metrologia”, Vol. 42, No. 6, 2005, DOI: 10.1088/0026-1394/42/6/S22.
  15. Buonanno G., Dell’lsola M., Design and metrological characterisation of different pressure balances using the finite-element method, “High Temperatures-High Pressures”, Vol. 33, No. 2, 2001, 189–198, DOI: 10.1068/htrt207.
  16. Samodro R.R.A., Choi I.M., Woo S.Y., Lee S.J., A study on the pressure gradient effect due to a leak in a pressure calibration system, “Metrologia”, Vol. 49, No. 3, 2012, DOI: 10.1088/0026-1394/49/3/315.
  17. Buonanno G., Dell’Isola M., Frattolillo A., Simplified analytical methods for evaluating the pressure distortion coefficient of controlled-clearance pressure balances, “High Temperatures-High Pressures”, Vol. 35, No. 1, 2003, 81–92, DOI: 10.1068/HTJR075.
  18. Eltawil A.A., Shaker A.G., Validation of NIS 500 MPa hydraulic pressure measurement, “International Journal of Metrology and Quality Engineering”, Vol. 8, No. 3, 2017, DOI: 10.1051/ijmqe/2016031.
  19. Kajikawa H., Kazunori I., Tokihiko K., Newly developed method for measuring jacket pressure coefficient of controlled-clearance piston-cylinders, SICE Annual Conference, IEEE, 2011.
  20. Pavese F., Molinar M.B., Primary Standards for Pressure Measurements, “Modern Gas-Based Temperature and Pressure Measurements”, 2013, 291–392, DOI: 10.1007/978-1-4757-5869-6_7.
  21. Wongthep P., Rabault T., Noguera R., Sarraf C., Numerical investigation of the real and ideal gap profiles in the calculation of the pressure distortion coefficient and piston fall rate of an LNE 200 MPa pressure balance, “Metrologia”, Vol. 50, No. 2, 2013, 180–186, DOI: 10.1088/0026-1394/50/2/180.
  22. Samodro R.A., Choi I.M., Woo S.Y., Investigation of 1 GPa Controlled Clearance Piston Gauge Using Finite Element Analysis, “MAPAN”, Vol. 35, 2020, 105–110, DOI: 10.1007/s12647-019-00363-3.
  23. Thakur V.N., Sharma R., Kumar H., Omprakash, Vijayakumar D.A., Yadav S., Kumar A., On long-term stability of an air piston gauge maintained at National Physical Laboratory, India, “Vacuum”, Vol. 176, 2020, DOI: 10.1016/j.vacuum.2020.109357.