The problem of state constraints in designing the discrete time sliding mode controller

eng Article in English DOI: 10.14313/PAR_226/15

send Marek Jaskuła , Mateusz Pietrala , Piotr Leśniewski Politechnika Łódzka, Wydział Elektrotechniki i Elektroniki

Download Article

Abstract

In this paper we study the problem of state constraints in discrete time sliding mode control. We present a sufficient condition for the strategy that drives the representative point monotonically to the sliding hyperplane in finite time. The advantage of this strategy is that disturbances do not have to fulfill the matching conditions. Our approach is based on the so-called reaching law technique.

Keywords

discrete-time systems, reaching law, sliding mode control, state constraints, variable structure system

Ograniczenie zmiennych stanu w dyskretnym sterowaniu ślizgowym

Streszczenie

W artykule przeanalizowany został problem ograniczenia zmiennych stanu w dyskretnym sterowaniu ślizgowym. Do zaprojektowania regulatora zastosowano regułę osiągania ruchu ślizgowego. Zaprezentowano warunek dostateczny na monotoniczną zbieżność stanu obiektu do płaszczyzny ślizgowej w skończonym czasie. Zaletą przedstawionej metody jest to, że zakłócenia nie muszą spełniać warunków dopasowania.

Słowa kluczowe

ograniczenia zmiennych stanu, reguła osiągania ruchu ślizgowego, sterowanie o zmiennej strukturze, sterowanie ślizgowe, układy czasu dyskretnego

Bibliography

  1. Bartolini G., Ferrara A., Spurgeon S. (eds.), New trends in sliding mode control, Special issue: “International Journal of Robust Nonlinear Control”, Vol. 7, 1997, 297–427.
  2. Bartoszewicz A., Kaynak O., Utkin V.I. (eds.), Sliding mode control in industrial applications, Special section: “IEEE Transactions on Industrial Electronics”, Vol. 55, 2008, 3805–4103.
  3. Bartoszewicz A., Patton R. (eds.), Sliding mode control, Special issue: “International Journal of Adaptive Control and Signal Processing”, Vol. 21, 2007, 635–822.
  4. Basin M., Fridman L., Shi P. (eds.), Optimal sliding mode algorithms for dynamic systems, Special issue: “Journal of the Franklin Institute”, Vol. 349, 2012, 1317–1616.
  5. Gao W. (ed.), Variable structure control, Special issue: “IEEE Transactions on Industrial Electronics”, Vol. 40, 1993, 1–165.
  6. Kaynak O., Computationally intelligent methodologies and sliding – mode control, Special issue: “IEEE Transactions on Industrial Electronics”, Vol. 48, 2001, 2–151.
  7. Kaynak O., Bartoszewicz A., Utkin V.I. (eds.), Sliding mode control in industrial applications, Special issue: “IEEE Transactions on Industrial Electronics”, Vol. 56, 2009, 3271–3274.
  8. Misawa E., Utkin V.I. (eds.), Variable structure systems, Special issue: Transactions of ASME – “Journal of Dynamic Systems, Measurement, and Control”, Vol. 122, 2000, 585–819.
  9. Shtessel Y., Fridman L., Zinober A. (eds.), Advances in higher order sliding mode control, Special issue: “International Journal of Robust and Nonlinear Control”, Vol. 18, 2008, 381–585.
  10. Shtessel Y., Spurgeon S., Fridman L., Advances in sliding mode observation and estimation, Special issue: “International Journal of Systems Science”, Vol. 38, 2007, 845–942. 
  11. Utkin V.I. (ed.), Sliding mode control, Special issue: “International Journal of Control”, Vol. 57, 1993, 1003–1259. 
  12. Yu X. (ed.), Adaptive learning and control using sliding modes, Special issue: “Applied Mathematics and Computer Science”, Vol. 8, 1998, 5–197.
  13. Yu X., Wang B., Li X., Computer-controlled variable structure systems: the state of the art, “IEEE Transactions of Industrial Informatics”, Vol. 8, 2012, 197–205, DOI: 1 109/TII.2011.2178249.
  14. Emelyanov S.V., Variable structure control systems, Nauka, Moscow 1967.
  15. Utkin V.I., Variable structure systems with sliding modes, “IEEE Transactions on Automatic Control”, Vol. 22, 1977, 212–222, DOI: 10.1109/TAC.1977.1101446.
  16. Furuta K., Sliding mode control of a discrete system, “Systems & Control Letters”, Vol. 14, 1990, 145–152, DOI: 10.1016/0167-6911(90)90030-X.
  17. Milosavljevi Č., General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems, “Automation and Remote Control”, Vol. 46, 1985, 307–314.
  18. Utkin V.I., Drakunov S.V., On discrete-time sliding mode control, IFAC Conference on Nonlinear Control, 1989, 484–489.
  19. Gao W., Hung J.C., Variable structure control of nonlinear systems: A new approach, “IEEE Transactions on Industrial Electronics”, Vol. 40, Iss. 1, 1993, 45–55, DOI: 10.1109/41.184820.
  20. Gao W., Wang Y., Homaifa A., Discrete-time variable structure control systems, “IEEE Transactions on Industrial Electronics”, Vol. 42, Iss. 2, 1995, 117–122, DOI: 10.1109/41.370376.
  21. Bartoszewicz A., Latosiński P., Discrete time sliding mode control with reduced switching – a new reaching law approach, “International Journal of Robust and Nonlinear Control”, Vol. 26, Iss. 1, 2016, 47–68, DOI: 10.1002/rnc.3291.
  22. Bartoszewicz A., Latosiński P., Reaching law for DSMC systems with relative degree 2 switching variable, “International Journal of Control”, Vol. 90, Iss. 8, 2017, 1626–1638, DOI: 10.1080/00207179.2016.1216606.
  23. Bartoszewicz A., Leśniewski P., Reaching law approach to the sliding mode control of periodic review inventory systems, “IEEE Transactions on Automation Science and Engineering”, Vol. 11, Iss. 3, 2014, 810–817, DOI: 10.1109/TASE.2014.2314690.
  24. Bartoszewicz A., Leśniewski P., Reaching law-based sliding mode congestion control for communication networks, “IET Control Theory & Applications”, Vol. 8, Iss. 17, 2014, 1914–1920, DOI: 10.1049/iet-cta.2014.0503.
  25. Bartoszewicz A., Leśniewski P., New switching and nonswitching type reaching laws for SMC of discrete time systems, “IEEE Transactions on Control System Technology”, Vol. 24, Iss. 2. 2016, 670–677, DOI: 10.1109/TCST.2015.2440175.
  26. Chakrabarty S., Bandyopadhyay B., A generalized reaching law for discrete sliding mode control, “Automatica”, Vol. 52, 2015, 83–86, DOI: 10.1016/j.automatica.2014.10.124.
  27. Chakrabarty S., Bandyopadhyay B., A generalized reaching law with different convergence rates, “Automatica”, Vol. 63, 2016, 34–37.
  28. Chakrabarty S., Bartoszewicz A., Improved robustness and performance of discrete time sliding mode control systems, “ISA Transactions”, Vol. 65, 2016, 143–149, DOI: 10.1016/j.isatra.2016.08.006.
  29. Golo G., Milosavljevi Č., Robust discrete-time chattering free sliding mode control, “Systems & Control Letters”, Vol. 41, Iss. 1, 2000, 19–28, DOI: 10.1016/S0167-6911(00)00033-5.
  30. Niu Y., Ho D.W.C., Wang Z., Improved sliding mode control for discrete-time systems via reaching law, “IET Control Theory & Applications”, Vol. 4, Iss. 11, 2010, 2245–2251, DOI: 10.1049/iet-cta.2009.0296.
  31. Bartolini G., Ferrara A., Utkin V.I., Adaptive sliding mode control in discrete-time systems, “Automatica”, Vol. 31, Iss. 5, 1995, 769–773, DOI: 10.1016/0005-1098(94)00154-B.
  32. Bartoszewicz A., Discrete-time quasi-sliding-mode control strategies, “IEEE Transactions on Industrial Electronics”, Vol. 45, Iss. 4, 1998, 633–637, DOI: 10.1109/41.704892.
  33. Bartoszewicz A., Time-varying sliding modes for second order systems, IEE Proceedings on Control Theory and Applications, Vol. 143, Iss. 5, 1996, 455–462, DOI: 10.1049/ip-cta:19960535.
  34. Bartoszewicz A., Design of a nonlinear time-varying switching line for second order systems, 37th IEEE Conference on Decision and Control, Tampa, USA, 1998, 2404–2408, DOI: 10.1109/CDC.1998.757765.
  35. Bartoszewicz A., Nowacka A., Shifted switching plane design for the third-order system subject to velocity, acceleration and input signal constraints, International Journal of Adaptive Control and Signal Processing, Vol. 21, 2007, 779–794.
  36. Bartoszewicz A., Nowacka A., VSC of the third order system with state and input signal constraints, European Control Conference, Kos, Greece, 2007, 3203–3210.
  37. Bartoszewicz A., Nowacka-Leverton A., ITAE optimal sliding modes for third order systems with input signal and state constraints, “IEEE Transactions on Automation Control”, Vol. 55, Iss. 8, 2010, 1928–1932, DOI: 10.1109/TAC.2010.2049688.
  38. Corradini M.L., Orlando G., Linear unstable plants with saturating actuators: Robust stabilization by a time varying sliding surface, “Automatica”, Vol. 43, Iss. 1, 2007, 88–94, DOI: 10.1016/j.automatica.2006.07.018.
  39. Nowacka-Leverton A., Bartoszewicz A., ITAE optimal transient performance in SMC of third order systems with state and input constraints, IEEE Conference on Decision Control, Shanghai, China, 2009, 6720–6725, DOI: 10.1109/CDC.2009.5400109.
  40. Nowacka-Leverton A., Pazderski D., Michałek M., Bartoszewicz A., Experimental results in sliding mode control of hoisting crane subject to state constraints, SIBIRCON, Irkuck, Russia, 2010, 842-847, DOI: 10.1109/SIBIRCON.2010.5555016.
  41. Pietrala M., Jaskuła M., Leśniewski P., Bartoszewicz A., Sliding Mode Control of Discrete Time Dynamical Systems with State Constraints, Trends in Advanced Intelligent Control, Optimization and Automation, Proc. KKA 2017 – The 19th Polish Control Conference, Kraków, Poland, 2017, 4–13, DOI: 10.1007/978-3-319-60699-6_2.