Stability conditions of fractional discrete-time scalar systems with pure delay

eng Article in English DOI:

send Andrzej Ruszewski Faculty of Electrical Engineering, Białystok University of Technology

Download Article

Abstract

In the paper the problem of stability of fractional discrete-time linear scalar systems with state space pure delay is considered. Using the classical D-decomposition method, the necessary and sufficient condition for practical stability as well as the sufficient condition for asymptotic stability are given.

Keywords

asymptotic stability, discrete-time linear system, fractional order, practical stability

Warunki stabilności skalarnych układów dyskretnych niecałkowitego rzędu z czystym opóźnieniem

Streszczenie

W pracy rozpatrzono problem stabilności liniowych skalarnych układów dyskretnych niecałkowitego rzędu z czystym opóźnieniem zmiennych stanu. Wykorzystując metodę podziału D podano warunek konieczny i wystarczający praktycznej stabilności oraz warunek wystarczający stabilności asymptotycznej.

Słowa kluczowe

liniowy układ dyskretny, niecałkowity rząd, stabilność asymptotyczna, stabilność praktyczna

Bibliography

  1. Das S., Functional Fractional Calculus for System Identification and Controls, Springer, Berlin 2008.
  2. Busłowicz M., Stability of state-space models of linear continuous-time fractional order systems, „Acta Mechanica et Automatica”, Vol. 5, No. 2, 2011, 15-22.
  3. Busłowicz M., Practical stability of scalar discrete-time linear systems of fractional order, [in:] Swierniak A., Krystek J. (Eds.), Automatyzacja procesów dyskretnych: teoria i zastosowania, Vol. 1, Gliwice 2012, 31-40 (in Polish).
  4. Busłowicz M., Kaczorek T., Simple conditions for practical stability of linear positive fractional discrete-time linear systems, „International Journal of Applied Mathematics and Computer Science”, Vol. 19, No. 2, 2009, 263-269.
  5. Debnath L., Recent applications of fractional calculus to science and engineering, „International Journal of Mathematics and Mathematical Sciences”, Vol. 54, 2003, 3413-3442.
  6. Dzieliński A., Sierociuk D., Stability of discrete fractional state-space systems, „Journal of Vibration and Control”, Vol. 14, 2008, 1543-1556.
  7. Dzieliński A., Sierociuk D., Sarwas G., Some applications of fractional order calculus, „Bulletin of the Polish Academy of Sciences: Technical Sciences”, Vol. 58, No. 4, 2010, 583-592.
  8. Gryazina E.N., Polyak B.T., Tremba A.A., Ddecomposition technique state-of-the-art, „Automation and Remote Control”, Vol. 69, No. 12, 2008, 1991-2026.
  9. Guermah S., Djennoune S., Bettayeb M., A New Approach for Stability Analysis of Linear Discrete-Time Fractional-Order Systems, [in:] Baleanu D. et al. (Eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, 2010, 151-162.
  10. Kaczorek T., Practical stability of positive fractional discrete-time systems, „Bulletin of the Polish Academy of Sciences: Technical Sciences”, Vol. 56, No. 4, 2008, 313-317.
  11. Kaczorek T., Selected Problems of Fractional Systems Theory, Publishing Department of Białystok University of Technology, Białystok 2009 (in Polish).
  12. Kaczorek T., Selected Problems of Fractional Systems Theory, Springer, Berlin 2011.
  13. Monje C., Chen Y., Vinagre B., Xue D., Feliu V., Fractional-order Systems and Controls, Springer-Verlag, London 2010.
  14. Ostalczyk P., Epitome of the fractional calculus. Theory and its applications in automatics, Publishing Department of Technical University of Łódz, Łódz 2008 (in Polish).
  15. Petras I., Stability of fractional-order systems with rational orders: a survey, „Fractional Calculus and Applied Analysis. An International Journal for Theory and Applications”, Vol. 12, 2009, 269-298.
  16. Petras I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, London 2011.
  17. Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999.
  18. Ruszewski A., Stability regions of closed loop system with time delay inertial plant of fractional order and fractional order PI controller, „Bulletin of the Polish Academy of Sciences: Technical Sciences”, Vol. 56, No. 4, 2008, 329-332.
  19. Ruszewski A., Stabilization of inertial processes with time delay using fractional order PI controller, „Measurement Automation and Monitoring”, No. 2, 2010, 160-162.
  20. Sabatier J., Agrawal O.P., Machado J.A.T. (Eds.), Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London 2007.
  21. Sheng H., Chen Y., Qiu T., Fractional Processes and Fractional-Order Signal Processing, Springer, London 2012.
  22. Stanisławski R., Hunek W.P., Latawiec K.J., Finite approximations of a discrete-time fractional derivative, Proc. 16th IEEE Conference Methods and Models in Automation and Robotics, Miedzyzdroje, Poland 2011, 142-145.