Measurement fusion method for indoor localization of a walking robot

eng Article in English DOI:

Benedykt Jaworski , Dominik Bilicki , send Dominik Belter Institute of Control and Information Engineering, Poznań University of Technology

Download Article

Abstract

The article presents visual localization system for walking robots. The method uses two independent visual procedures to determine position and orientation of the robot’s body: Parallel Tracking and Mapping (PTAM) and the procedure which returns position of the camera in relation to the known marker. The heuristicbased data fusion method is proposed. The method takes into account properties of both modules to estimate real position of the robot. The properties of the method are presented using ground truth data from experiment on the robotic arm.

Keywords

data fusion, mobile robot, visual localization system

Integracja danych pomiarowych w systemie lokalizacji robota kroczącego

Streszczenie

Artykuł przedstawia wizyjny system lokalizacji robota kroczącego. Przedstawiono wykorzystanie algorytmu PTAM oraz metody określającej położenie kamery względem znacznika do określenia położenia robota. Przedstawiono metodę fuzji danych z obu systemów pomiarowych. Proponowana metoda jest alternatywą dla droższych systemów ‘motion capture’ wykorzystywanych do weryfikacji eksperymentalnej wewnątrz laboratorium.

Słowa kluczowe

fuzja danych, lokalizacja robota mobilnego, system wizyjny

Bibliography

  1. Belter D., Skrzypczyński P., Precise self-localization of a walking robot on rough terrain using PTAM, [in:] A. Azad et al. (Eds.), Adaptive Mobile Robotics, World Scientific, Singapore 2012, 89-96.
  2. Belter D., Skrzypczyński P., Rough terrain mapping and classification for foothold selection in a walking robot, ”Journal of Field Robotics”, Vol. 28, No. 4, 2011, 497-528.
  3. Gonzalez R., Rodriguez F., Guzman J., Pradalier C., Siegwart R., Combined Visual Odometry and Visual Compass for Off-Road Mobile Robots Localization, ”Robotica”, Vol. 30, No. 6, 2011, 1-14.
  4. Grisetti G., Stachniss C., Burgard W., Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling, [in:] Proc. of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, 2005, 2432-2437.
  5. [www.hagisonic.com] - Leading company of advanced sensors - Hagisonic (January 2013).
  6. Kalakrishnan M., Buchli J., Pastor P., Mistry M., Schaal S., Fast, robust quadruped locomotion over challenging terrain, IEEE International Conference on Robotics and Automation (ICRA), 2010, 2665-2670.
  7. Salahshoora K., Kordestanib M., Khoshrob M.S., Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and AN-FIS (adaptive neuro-fuzzy inference system) classifiers, 3rd International Conference on Sustainable Energy and Environmental Protection (SEEP 2009), Vol. 35, No. 12, December 2010, 5472-5482.
  8. Klein G., Murray D.W., Parallel Tracking and Mapping for Small AR Workspaces, [in:] Proc. of ISMAR, 2007, 225-234.
  9. Lee T.G., Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor, ”International Journal of Control, Automation, and Systems”, Vol. 1, No. 4, 2003, 444-542.
  10. Navarro-Serment L.E., Paredis C.J.J., Khosla P.K., A Beacon System for the Localization of Distributed Robotic Teams, [in:] Proceedings of the International Conference on Field and Service Robotics, 1999, 232-237.
  11. Ojeda L., Borenstein J., FLEXnav: Fuzzy Logic Expert Rule-based Position Estimation for Mobile Robots on Rugged Terrain, [in:] Proceedings of the IEEE International Conference on Robotics and Automation, Washington, USA, 2002, 317-322.
  12. Pinies P., Paz L.M., Galvez-Lopez D., Tardos J.D., CI-Graph SLAM for 3D Reconstruction of Large and Complex Environments using a Multicamera System, ”International Journal of Field Robotics”, Vol. 27, No. 5, 2010, 561-586.
  13. Reina G., Vargas A., Nagatani K., Yoshida K., Adaptive Kalman Filtering for GPS-based Mobile Robot Localization, IEEE International Workshop on Safety, Security and Rescue Robotics, 2007, 1-6.
  14. Skrzypczyński P., Laser scan matching for self-localization of a walking robot in man-made environments, [in:] Bidaud P. et al. (Eds.), Field Robotics: Proceedings of the 14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, World Scientific, 2011, 825-832.
  15. Skrzypczyński P., Simultaneous localization and mapping: A feature-based probabilistic approach, ”International Journal of Applied Mathematics and Computer Science”, Vol. 19, No. 4, 2009, 575-588.
  16. Strasdat H., Montiel J.M.M., Davison A.J., Scale Drift-Aware Large Scale Monocular SLAM, Robotics: Science and Systems, 2010.
  17. Suleiman W., Yoshida E., Kanehiro F., Laumond J-P, Monin A., On human motion imitation by humanoid robot, IEEE International Conference on Robotics and Automation, 2008, 2697-2704.