Pomiary zapotrzebowania nawozowego kukurydzy za pomocą aktywnego czujnika azotu

pol Article in Polish DOI: 10.14313/PAR_249/13

Katarzyna Kubiak-Siwińska , send Jan Kotlarz Sieć Badawcza Łukasiewicz – Instytut Lotnictwa, Centrum Technologii Bezzałogowych, Dział Teledetekcji, Al. Krakowska 110/112, 02-256 Warszawa

Download Article

Streszczenie

Azot jest ważnym makroskładnikiem biomasy, ponieważ odgrywa istotną rolę w procesach metabolicznych, produkcji białek, syntezie aminokwasów, enzymów, hormonów oraz jest składnikiem chlorofilu. Ocena jego niedoborów w uprawach kukurydzy jest przedmiotem badań naukowych. W artykule zaprezentowano wyniki pomiarów w kontrolowanych warunkach laboratoryjnych wskaźników teledetekcyjnych kukurydzy uprawianej w wariantach nawożenia 0–150 kg·N/ha. Zaproponowana metoda oceny niedoboru azotu z wykorzystaniem sensora Crop Circle pozwala na autonomiczne sterowanie precyzyjnym nawożeniem doglebowym w projektowanym rozwiązaniu robota polowego.

Słowa kluczowe

biomasa, nawożenie azotem, NDRE, NDVI, robot polowy

Fertilization of Maize Crops Using Active Sensor

Abstract

Nitrogen is an important macronutrient of biomass because it plays an important role in metabolic processes, protein production, amino acid synthesis, enzymes, hormones and is a component of chlorophyll. The assessment of its deficiencies in maize crops is the subject of scientific research. The article presents the results of measurements in controlled laboratory conditions of remote sensing indices of maize cultivated in fertilization variants of 0–150 kg . N/ha. The proposed method of assessing nitrogen deficiency using the Crop Circle sensor allows for autonomous control of precise soil fertilization in the designed solution of a field robot.

Keywords

biomass, field robot, NDRE, NDVI, nitrogen fertilization

Bibliography

  1. Berger K., Verrelst J., Feret J. B., Wang Z., Wocher M., Strathmann M., Danner M., Mauser W., Hank T., Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. “Remote Sensing of Environment”, Vol. 242, 2020, DOI: 10.1016/j.rse.2020.111758.
  2. Kokaly R.F., Clark R.N., Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. “Remote Sensing of Environment”, Vol. 67, No. 3, 1999, 267–287, DOI: 10.1016/S0034-4257(98)00084-4.
  3. Fourty T., Baret F., Jacquemoud S., Schmuck G., Verde bout J., Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. “Remote Sensing of Environment”, Vol. 56, No. 2, 1996, 104–117, DOI: 10.1016/0034-4257(95)00234-0.
  4. Chapin F.S., Bloom A.J., Field C.B., Waring R.H., Plant responses to multiple environmental factors. “BioScience”, Vol. 37, No. 1, 1987, 49–57, DOI: 10.2307/1310177.
  5. Kotlarz J., Siwiński J., Spiralski M., Kubiak K., (2022). Monitoring Effects of Drought on Nitrogen and Phosphorus in Temperate Oak Forests Using Machine Learning Tech niques. “Polish Journal of Environmental Studies”, Vol. 31, No. 2, 2022, 1137–1151, DOI: 10.15244/pjoes/141306.
  6. Loizzo R., Daraio M., Guarini R., Longo F., Lorusso R., Dini L., Lopinto E., Prisma mission status and perspective. [In:] IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, 4503–4506, DOI: 10.1109/IGARSS.2019.8899272.
  7. Matsunaga T., Iwasaki A., Tsuchida S., Iwao K., Tanii J., Kashimura O., Nakamura R., Yamamoto H., Kato S., Obata K., Mouri K., Tachikawa T. (2017, July). Current status of hyperspectral imager suite (HISUI) onboard International Space Station (ISS). [In:] 2017 IEEE international geoscience and remote sensing symposium (IGARSS), 443–446, DOI: 10.1109/IGARSS.2017.8126989.
  8. Guanter L., Kaufmann H., Segl K., Foerster S., Rogass C., Chabrillat S., ... & Sang B., The EnMAP spaceborne imaging spectroscopy mission for earth observation. “Remote Sensing”, Vol. 7, No. 7, 2015, 8830–8857, DOI: 10.3390/rs70708830.
  9. Croft H., Arabian J., Chen J.M., Shang J., Liu J., Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. “Precision Agriculture”, Vol. 21, No. 4, 2020, 856–880, DOI: 10.1007/s11119-019-09698-y.
  10. Sharifi A., Using sentinel-2 data to predict nitrogen uptake in maize crop. “IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing”, Vol. 13, 2020, 2656–2662, DOI: 10.1109/JSTARS.2020.2998638.
  11. Santos L.C., Aguiar A.S., Santos F.N., Valente A., Petry M., Occupancy grid and topological maps extraction from satellite images for path planning in agricultural robots. “Robotics”, Vol. 9, No. 4, 2020, DOI: 10.3390/robotics9040077.
  12. Krishna K.R., Push button agriculture: Robotics, drones, satellite-guided soil and crop management. CRC Press, 2017.
  13. Cao Q., Miao Y., Wang H., Huang S., Cheng S., Khosla R., Jiang R., Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. “Field Crops Research”, Vol. 154, 2013, 133–144, DOI: 10.1016/j.fcr.2013.08.005.
  14. Cummings C., Miao Y., Paiao G.D., Kang S., Fernández F.G., Corn nitrogen status diagnosis with an innovative multi-parameter crop circle phenom sensing system. “Remote Sensing”, Vol. 13, No. 3, 2021, DOI: 10.3390/rs13030401.
  15. McMurtrey III J.E., Chappelle E.W., Kim M.S., Meisinger J.J., Corp L.A., Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. “Remote Sensing of Environment”, Vol. 47, No. 1, 1994, 36–44, DOI: 10.1016/0034-4257(94)90125-2.
  16. Księżak J., Ekspertyza dotycząca nawożenia kukurydzy z wykorzystaniem badawczego modelu robota polowego, Instytut Uprawy Nawożenia i Gleboznawstwa, PIB, 2022, (materiał niepublikowany).
  17. Jiang R., Sanchez-Azofeifa A., Laakso K., Wang P., Xu Y., Zhou Z., Luo X., Lan Y., Zhao G., Chen X., UAV-based partially sampling system for rapid NDVI mapping in the evaluation of rice nitrogen use efficiency. “Journal of Cleaner Production”, Vol. 289, 2021, DOI: 10.1016/j.jclepro.2020.125705.
  18. Scott D.A., Johnson J.M., Gesch R.W., Cover crop and nitrogen rate management practices influence corn NDVI and nitrogen content. “Agronomy Journal”, Vol. 114, No. 4, 2022, 2473–2483, DOI: 10.1002/agj2.21085.
  19. Edalat M., Naderi R., Egan T.P., Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. “Journal of Plant Nutrition”, Vol. 42, No. 18, 2019, 2310–2322, DOI: 10.1080/01904167.2019.1648686.
  20. Shen J., Miao Y., Cao Q., Wang H., Yu W., Hu S., Wu H., Lu J., Hu. X., Yang W., Liu F., Estimating rice nitrogen status using active canopy sensor crop circle 430 in Northeast China. [In:] The Third International Conference on Agro-Geoinformatics, 2014, IEEE, DOI: 10.1109/Agro-Geoinformatics.2014.6910584.
  21. Solari F., Shanahan J., Ferguson R., Schepers J., Gitelson A., Active sensor reflectance measurements of corn nitrogen status and yield potential. “Agronomy Journal”, Vol. 100, No. 3, 2008, 571–579, DOI: 10.2134/agronj2007.0244.
  22. Yu H., Ding Y., Xu H., Dou X., Influence of light intensity distribution characteristics of light source on measurement results of canopy reflectance spectrometers. “Plant Methods”, Vol. 17, 2021, DOI: 10.1186/s13007-021-00804-8.
  23. Fitzgerald G.J., Characterizing vegetation indices derived from active and passive sensors. “International Journal of Remote Sensing”, Vol. 31, No. 16, 2010, 4335–4348, DOI: 10.1080/01431160903258217.