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1. Introduction

2DOF PID (two-degree-of-freedom) controller allows for 
shaping the set-point response of a feedback system without 
altering the disturbance response. Conventional way of 
achieving this is to apply a prefilter on the set-point input. 
In practical solutions, the PID controller is first tuned for 
satisfactory disturbance response and then the prefilter is 
added to get satisfactory set-point response, usually with 
a small or no overshoot. The prefilter and PID may be 
replaced by a single 2DOF PID controller which by means 
of two weights, denoted typically by b, c, decreases the set-
-point input for P and D modes, respectively [1, 2]. Since 
the weights determine zeros of the control system, they may 
be adjusted to shape the set-point response. The 2DOF PID 
controller is particularly convenient for integrating plants 
which for satisfactory disturbance response and no prefilter 
exhibit excessive overshoots [3, 4].

Servo-drives, indispensable in robotics, machine tools, etc. 
[5], are typical examples of integrating plants. Since oscil-
latory transients are forbidden, tuning a servo controller 
for multiple real poles of the closed-loop system is one of 
possible options. In the case of integrator plus time constant 
plant, being a model of voltage driven servo [6], the system 
with PID controller becomes of the third order, so may be 
tuned for a triple pole. This has already been presented for 
2DOF PID in [7] with such selection of the weights b, c, so 
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as to remove two of the three poles. Then the system for 
the set-point input becomes of the first order, so provides 
smooth transients. Discrete PID for such a servo is presen-
ted in [8], however without referring to 2DOF. As far as 
the current driven servo modeled by a double integrator 
is concerned, continuous and discrete PID controllers for 
the triple pole are designed in [9], also without referring to 
2DOF. Therefore, the natural objective of this paper is to 
extend the results from [9] on 2DOF PID, motivated by the 
approach from [7]. 

We add that other design methods for a double integra-
tor are reviewed in [10]. Advanced design involving a con-
strained state feedback controller for a permanent magnet 
synchronous servo-drive is presented in [11]. For practical 
applications conventional frequency designs are used, given 
natural frequency and damping ratio [6, 12].

The paper is organized as follows. Design of the conti-
nuous 2DOF PID controller for a double integrator given 
a closed-loop time constant is presented in Secs. 2 and 3. 
Next two sections deal with the discrete case, ended up with 
analytic expressions and nomograms for the weights b, c in 
terms of the closed-loop system triple pole. Experimental 
and simulated responses recorded in a lab set-up are com-
pared in Sec. 6 taking also into account features of an indu-
strial PID controller. Last section summarizes the results.

2. Triple pole placement

Consider a feedback system of Fig. 1 involving a double 
integrator ko/s2 as the plant, PID controller, and a set-point 
prefilter F. The double integrator may represent a servo-
-drive with current (torque) driven motor and mechanical 
load, resulting in the effective gain ko. The standard PID 
controller has the form

	
( ) .I

P D

k
PID s k k s

s
= + + 	 (1)
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Hence, the closed-loop transfer function for the no prefilter 
case (NF, i.e. F = 1) becomes

	

( )
( )
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cl
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k k s k s k
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s k k s k s k

+ +
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+ + +
	 (2)

We want Gcl to have a triple pole −p. By equating corre-
sponding coefficients in the Gcl denominator with (s + p)3 
polynomial one obtains the following controller settings [9]
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here expressed in terms of a given closed-loop time constant 
λ = 1/p. Step response of Gcl shown in Fig. 2 for λ = 0.075 s 
(as in Sec. 6) exhibits 20 % overshoot (NF plot).

To eliminate the overshoot, note that for the settings 
(3) the controller transfer function becomes
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with the complex zero
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The overshoot may be eliminated by applying a first order 
prefilter determined by the real part of the zero, so
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	 (5)

Settling time is estimated as 8 ,st λ≅  i.e.  for 
 (Fig. 2). Eliminating the zeros from Gcl by

	 2 2
( ) I
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k s k s k
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+ +
	 (6)

is another filtering option.

3. 2DOF PID for servo

Following [1, 2] introduce a reduced gain PID controller in 
the form

	
	

( ) I
bc P D

k
PID s bk ck s

s
= + + 	 (7)

with the weights b, c. Such a controller is a component of 
the 2DOF PID control system in Fig. 3. The diagram can be 
transformed to the original one in Fig. 1 by using the filter
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After cancellation of the terms kDs2 + kPs + kI and using (s + p)3  
in the denominator the system transfer function F2DGcl 
becomes
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=

+
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To decrease the settling time the idea proposed in [7] is 
to express the numerator ckDs2 + bkPs + kI as ckD(s + p)2, 
so as to reduce the order of the system to one. Using the 
settings (3) and equating coefficients of the two polynomials 
yield the following fixed values of the 2DOF weights

	

2 ,
3

b =  1 .
3

c = 	 (10)

So they do not depend either on the plant’s ko or the design 
data λ.

Fig. 2. Step responses of the control system
Rys. 2. Odpowiedzi skokowe układu sterowania

Fig. 1. PID control system for a double integrator
Rys. 1. Układ z regulatorem PID dla podwójnego integratora

Fig. 3. 2DOF PID control system with two controllers
Rys. 3. Struktura układu sterowania 2DOF PID z dwoma regulatorami

The system transfer function simplifies to

	
2D

1( ) ,
1cl

pF G s
s p sλ

= =
+ +

	 (11)

so with the settling time 4λ, twice shorter than before (see 
Fig.  2). The 2DOF filter can be expressed as
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The 2DOF PID continuous controller that replaces F and PID 
in Fig. 1 operates according to the algorithm (s-dependence 
in U, W, Y dropped)

	

2 1( ) .
3 3

I
P D

k
U k W Y W Y k s W Y

s
   

= − + − + −   
   

	 (13)

Finally we quote [7] that for the integrator plus time con-
stant plant, i.e. for the voltage driven servo, the weights  
b = 2/3, 1 / (9 )c α=  with / 0.25D IT Tα = ≤ have been 
obtained. So, in the continuous case, the reduction of 
P  mode is the same for both types of the servo.

In practical implementations, the PID controller involves 
a filtered derivative term, here in the form kDs/(TDs/D + 1), 
TD = kD/kP, with the divisor D typically from 4 to 8. Sim-
ulated step responses of the four systems for D = 4, 8 and 
∞ are shown in Fig. 4. Whereas the responses for F1 and 
F2 filters with D = 4, 8 remain quite close to the one with 
D = ∞ (i.e. to Fig. 2), the response for 2D filter exhibits 
a „saddle” in the middle part for D = 4. Thus small values 
of D adversely affect the 2DOF PID system designed with-
out taking D into account, what may be viewed as a cost of 
the short settling time. As could be expected, a decrease of 
D increases the overshoot for the NF case.

4. Pole placement for discrete control

We shall briefly repeat essential results from [9], regarding 
discrete-time servo control running with a discretization 
step Δ. Zero-order-hold discretization of the double inte-
grator results in

	

2
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zG z k
z

∆ +
=

−
	 (14)

The typical discrete PID controller has the form [3]

	  	 (15a)
where
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Hence, the closed-loop transfer function becomes
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Fig. 4. Simulated step responses for the controller with derivative filtering
Rys. 4. Symulowane odpowiedzi skokowe dla regulatora z filtracją w członie różniczkującym
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with

	

2

, 1, 2, 3.
2i o iK k k i∆

= = 	 (16b)

Following the continuous case, we want the denominator 
of Gcl to have the triple pole r given by

	 ,pr e− ∆=  1 .p
λ

= 	 (17)

Such a denominator may be written as (z − r)3(z − z1) with 
a fourth single pole z1. The triple pole r is provided by the 
following gains [9]
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where
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	Having the gains one can calculate the controller settings
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Nomograms expressing the settings directly in terms of r 
are given in [9].

The fourth pole z1 does not exceed r, so it does not affect 
system dynamics. In particular, for r = z1 one obtains the 
unique quadruple pole  The con-
dition 4r r≥  corresponds to requirement 0.383λ∆ ≤  on the 
discretization step. For λ  =  0.075 s the requirement means 

0.0287 s.∆ ≤  Here Δ = 0.02  s is taken for testing (close to 
the limit 0.0287) to distinguish the discrete case from con-
tinuous. Step responses of the discrete implementation are 
quite similar to the continuous ones in Fig. 2, except that 
the overshoot for the NF case increases to 50 %.

5. Discrete 2DOF PID

The discrete reduced gain PID controller becomes

    	
(20a)

with Fig. 5. Weights b(r), c(r) for the discrete 2DOF PID servo
Rys. 5. Wagi b(r), c(r) dla serwo-napędu z regulatorem 2DOF PID

			     

(20b)

so the discrete F2D filter has the form

2 22
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by using (16b). The system transfer function F2DGcl after 
cancellation of the terms K1z2 − K2z + K3 (see (16a)) and 
inserting the triple pole denominator becomes
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As before, two poles can be eliminated by equating 
2

1 2 3k z k z k′ ′ ′− +  to 2
1( ) .k z r′ −  Using the expressions (20b) one 

obtains two linear equations for the weights b, c which yield
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where kP, kI, kD are given by (18) and (19). Applying some 
symbolic calculations [13] one finally obtains the weights as 
the following rational functions of the given pole r
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The nomograms b(r), c(r) for r ≥ r4 ≅ 0.682 are shown in 
Fig. 5. For r close to 1, so for a very small step Δ, b and c 
approach 2/3 and 1/3, respectively, so as (10) for the contin-
uous case. Increase of Δ decreases r, what also decreases the 
weights. For r = exp (−0.02/0.075) ≅ 0.75 used in the tests 
we get b = 0.52 and c = 0.17 instead of the continuous case 
values 2/3 and 1/3.
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Fig. 6. Experimental and simulated responses for continuous control
Rys. 6. Odpowiedzi eksperymentalne i symulacyjne dla sterowania ciągłego

6. Experimental verification

The servo-system already presented in [9] has been used for 
experiments. The system consists of an ESTUN AC motor 
(400 W, 3000 RPM) with a dedicated servo-drive [14], ball 
screw linear actuator (0.5 m range) as the mechanical load, 
Beckhoff C6920 industrial PC [15] as a real-time control-
ler, and standard PC with TwinCAT 3 software for pro-
gramming and recording. The servo-drive and controller are 
connected by EtherCAT, whereas the controller and PC by 
Ethernet. The drive operates in the current (torque) con-
trol mode, so the plant dynamics is described by a double 
integrator. The continuous control has been implemented by 
FB_CTRL_PID function block from TwinCAT 3, whereas 
the filters and discrete control by means of recursive func-
tions generated by c2dm-ZOH MATLAB instruction. The 
controller may also limit the control signal to some prescri-
bed values. To avoid the limits in most runs the set-point for 
the linear actuator motion is restricted to 0.1 m or 0.04 m.

Experiments with the real system have been affected by 
a few phenomena not encountered in the simulations, par-
ticularly by friction of the plant, dynamics of the drive not 
taken into account in the ko/s2 model, limits of the maxi-
mum torque. Role of the PID function block additional 

parameters has also been examined. The experimental step 
responses for the tested cases are presented in Figs. 6, 7, 8, 
where the first two compare the responses with simulations, 
while the third one deals with the PID additional parame-
ters. Details are described below.
1.	Time of the step responses has been considerably 

extended over several closed-loop time constants λ (design 
data) to show that exceeding the set-point does not mean 
a steady-state error but rather small overshoots caused 
by imperfect correspondence of the system dynamics to 
the model. The overshoots are later slowly compensated 
by integral action of the controller. If small overshoots 
(up to 1 % of the range) are not acceptable in a practi-
cal application one may try to increase stiffness of the 
controller by decreasing λ, or refer to nonlinear control 
methods. This is however beyond the scope of this paper.

2.	Comparison of the responses for the set-points 0.1 m and 
0.04 m in Figs. 6, 7 highlights the nonlinear effects in 
the real system. Basically the responses of the systems 
with F1 and F2 filters are very similar, differences are 
small and rather random, owing to stochastic nature of 
friction. In the case of the NF response, the flattening 
is a typical effect of friction (loss of motion continuity) 
when the control signal goes down.
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3.	Responses for different values of the FB CTRL PID func-
tion block additional parameters, such as derivative fil-
tering divisor D (see Sec. 3), control limit uLim, and 
antiwindup AWDP protection (ON or OFF) are shown 
in Fig. 8.
̶	 For the filters F1, F2 and the set-point w = 0.04 m, the 
control signal does not reach 10 % of its nominal range, 
so the responses do not depend on uLim or AWDP. 
Also the divisor D = 8 or 4 affects the responses only 
slightly, hence the systems with F1 or F2 filters are 
fairly resistant to the changes of D.

̶	 Nominal value (100 %) of the control signal is reached 
only for the NF system what activates AWDP (if ON) 
and decreases the overshoot.

̶	 Setting uLim to 10 % significantly slows down raising 
the responses in NF and 2D systems, increasing the 
overshoot in 2D. However, the control process remains 
stable and correct.

̶	 Setting D = 4 for NF and 2D alters considerably the 
system dynamics what triggers oscillations in the 
responses. Therefore, to get short settling time pro-
vided by 2D, small values of the derivative filtering 
divisor D should be avoided.

7. Summary

Current driven servos are standard components of robots, 
machine tools, conveyors and other equipment involving 
motion control. Conventional frequency designs are applied in 
practice to tune PID controllers for such servos. Since position 
of the current driven motor is described by a double integra-
tor, a new design method has been proposed in [9] based on 
a given triple pole of the closed-loop system, both for continu-
ous and discrete cases. First or second order prefilters eliminate 
the overshoot of a set-point step response, however with the 
settling time equal to eight closed-loop time constant. Here 
this method has been upgraded for a 2DOF PID controller, so 
with the weights b, c on P, D modes for the set-point input. 
The proposed 2DOF PID cancels out two of three poles what 
reduces the settling time to four time constants, i.e. twice. It 
turns out that for the continuous case the weights b, c are fixed 
numbers, independent on the plant and design data. For the 
discrete case the weights depend on discretization step and 
decrease when the step increases. Experimental verification 
has shown reasonably good correspondence of system respon-
ses to simulations, but also demonstrated that friction of the 
plant considerably slows down the responses in the vicinity of 
a set-point. Small values of the derivative filtering divisor D 

Fig. 7. Discrete control − experimental and simulated responses
Rys. 7. Sterowanie dyskretne − odpowiedzi eksperymentalne i symulacyjne
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Fig. 8. Dependance of experimental responses on the PID function block parameters: D, uLim, AWDP
Rys. 8. Zależność odpowiedzi eksperymentalnych od parametrów bloku funkcyjnego PID: D, uLim, AWDP

(strong filtering) in the 2DOF PID controller should be avo-
ided as they inflict oscillations.
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Streszczenie: Przedstawiono metodę projektowania ciągłego i dyskretnego regulatora 2DOF PID 
dla serwonapędu sterowanego prądowo, opisanego jako podwójny integrator. Stała czasowa układu 
zamkniętego jest jedyną daną projektową. Wynikiem metody są reguły dla trzech nastaw PID oraz 
dwóch wag b, c w 2DOF, które redukują wzmocnienia torów P, D dla wielkości zadanej. Nastawy 
PID dają potrójny rzeczywisty biegun układu zamkniętego, co zapewnia gładkie przebiegi. Wagi b, c 
eliminują przeregulowanie odpowiedzi na skok wielkości zadanej. W przypadku sterowania ciągłego 
wagi są ustalonymi liczbami, niezależnymi od danych projektowych. W przypadku dyskretnym 
wagi maleją przy wzroście kroku próbkowania. Eksperymenty laboratoryjne potwierdzają dobrą 
zgodność odpowiedzi systemu z symulacjami, ale także demonstrują efekty tarcia, gdy wyjście jest 
bliskie wartości zadanej. Zbadano również rolę dodatkowych parametrów przemysłowego bloku 
funkcyjnego PID.

Słowa kluczowe: serwomechanizm prądowy, podwójny integrator, 2DOF PID, filtr wielkości zadanej, lokalizacja biegunów, efekty tarcia

Regulator 2DOF PID dla serwomechanizmu prądowego
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