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1. Introduction 

Object detectors can be divided into one-stage [1] and two-
stage [2] detectors. Most methods are anchor-based [2, 1], but 
in recent years, some anchor-free detectors have also been 
proposed [3]. Two-stage methods tend to have a rather long 
inference time because of the additional step of region pro-
posal generation [2]. One-stage methods are usually faster, 
however, they are also less precise [4]. To better handle multi-
scale objects, a method presented in [5] proposes the Feature 
Pyramid Network that combines feature maps from different 
depths of the pyramid. The main challenges of general object 
detection include invariance to object scale, inter-class and 
intra-class appearance differences, and noisy backgrounds. The 
difference between the precision for small and large instances 
indicates that small objects are still a big challenge even for 
the state-of-the-art detectors [1, 6]. In recent years, the col-
lected datasets contain objects of an even smaller scale and 
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refer to them as tiny [7–9]. Numerous datasets, particularly 
the remote sensing from drones and satellites [10, 11], con-
tain extremely high-resolution images, which poses additional 
challenges. In this article, we summarize the progress of the 
research in the field of tiny object detection. The main con-
tribution of this paper is as follows: 1) a detailed discussion 
of the challenges specific to small and tiny object detection, 
as well as a comparison of different object size definitions, 
2)  a comprehensive analysis of publicly available small and 
tiny object detection benchmarks, 3) a thorough discussion of 
metrics and methods dedicated to small objects, and extensive 
quantitative analysis.

2. Tiny Object Detection

Visual recognition of tiny objects shares many challenges with 
the problem of generic object detection, however, there are also 
many small-scale specific issues: 1) objects with a small number 
of pixels have limited appearance information, making both 
classification and localization difficult, 2) a low signal-to-noise 
ratio that appears especially in high-resolution aerial images 
with complex backgrounds and sparsely distributed objects, 
3) most convolutional backbones rely on downsampling, which 
can cause the small features to disappear or make them highly 
contaminated by the background. Standard anchor assignment 
strategies and the Intersection over Union (IoU) have also been 
shown to be ineffective [8, 12, 13].
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A size of an object is usually classified by its absolute area 
[14, 11], by the geometric mean of its height and width on the 
image [9, 7], or by a single dimension [15]. The tiny category 
was created [9, 7, 11] to distinguish objects whose size is in the 
lower range of small objects in the COCO dataset, but there is 
no unambiguous definition as each dataset uses slightly differ-
ent threshold values (Tab. 1). If possible, in Tab. 1, we convert 
the thresholds to the size of the object defined as the geometric 
mean of its height and width. Regarding WIDER FACE, the 
provided values concern the object’s height. We identify two 
types of datasets regarding the goal of the research – small-only 
and multi-scale object detection. The first group contains the 
datasets that define the upper limit on the object size, so the 
scale variation is greatly reduced. Datasets containing a whole 
range of scales, from very small to large, but dominated by tiny 
instances, belong to the second group. The absolute thresh-
olds shown in Tab. I do not take image size into account, so 
an object of a certain size will be classified in the same group 
regardless of image size. The very high-resolution data found in 
some datasets [10, 16, 11] cause additional challenges. Due to 
memory constraints, it cannot be processed at full resolution, 
downsampling causes a significant information loss, and patch-

by-patch analysis greatly increases the runtime. Therefore, in 
this paper, we also consider the relative definition of object size.

3. Tiny Object Detection Datasets

We have collected 10 object detection datasets that either 
directly focus on small or tiny object detection, or contain 
many small instances. Most of them are aerial datasets with 
images collected by UAVs [9, 17–20], satellites [16, 11], or 
both [8, 21]. Their main features are presented in Tab. 2. 
Average sizes (defined as the geometric mean of height and 
width) were calculated for the whole image (Simage) and for the 
bounding box of the object (Sobject). We report the number of 
images and objects for subsets for which labels are publicly 
available and we use the following annotation type abbrevia-
tions: Horizontal Bounding Box (HBB), Oriented Bounding 
Box (OBB), Multiple Object Tracking (MOT), Single Object 
Tracking (SOT), Crowd Counting (CC), Coarse Point (CP). 
Among the presented datasets, WIDERFACE seems to be 
the least challenging due to the low image resolution, relati-
vely high object size, and the fact that instances smaller than 

Table 1. Thresholds for size classes [px] in selected datasets
Tabela 1. Wartości progów dla różnych kategorii rozmiarów obiektów w wybranych zbiorach danych

Dataset tiny small medium large

MS COCO [15] — 0–32 32–96 96–inf

WIDER FACE [16] — 10–50 50–300 300–inf

TinyPerson [9]
tiny1 tiny2 tiny3

20–32 — —
2–8 8–12 12–20

AI-TOD [7]
very tiny tiny

16–32 32–64 —
2–8 8–16

SODA [11]
eT rT gT

32–45 — —
0–16 16–24 24–32

Fig. 1. The number of instances 
in the 6 predefined size 
categories in the selected 
object detection datasets
Rys. 1. Liczba obiektów 
przypadająca na każdą z 6 
kategorii rozmiarów obiektów 
w wybranych zbiorach danych

86

Deep Learning for Small and Tiny Object Detection: A Survey

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A  NR 3/2023



10 pixels are ignored. SODA [11], AI-TOD [8], and TinyPer-
son [9] introduce upper object size limits, which are 45, 64, 
and 32 pixels respectively. More detailed information on the 
distribution of the object scales can be found in Fig. 1. To 
distinguish between small absolute size datasets and small 
relative size datasets, we plotted the number of instances in 
each size category for two sets of thresholds. We used thre-
sholds from [9] for very tiny, tiny and small combined with 
thresholds from [14] for medium and large. To obtain relative 
thresholds, each absolute value was divided by the average size 
of the image in the COCO dataset. The absolute thresholds 
have the following values: micro (0–2 px), very tiny (2–8 px), 
tiny (8–16 px), small (16–32 px), medium (32–96 px), large 
(96–∞ px), and the relative thresholds are as follows: micro 
(0–0.38 %), very tiny (0.38–1.52%), tiny (1.52–3.05 %), small 
(3.05–6.10 %), medium (6.10–18.30 %), large (18.30–100 %). 
Satellite data include multiscale objects when the absolute 
definition is applied. However, due to extremely high resolu-
tion most of them become micro, very tiny, or tiny when the 
relative definition is applied. A similar relationship holds for 
UAV-based datasets, but, due to the lower resolution, there 
are rather no micro objects in these datasets. There are some 
exceptions – AI-TOD, SODA fully dedicated to the tiny object 
detection, so there are no large instances, and UAVDT in 
which, regardless of the definition, most objects are medium, 
small or tiny.

4. Tiny Object Detection Metrics

The same metrics are usually used to evaluate the quality of 
tiny and small object detection and multi-scale object detec-
tion [14, 22]. Older datasets [15, 19, 10] use metrics introdu-
ced by the Pascal VOC [22], while newer ones [18, 20, 7, 16, 
11] more often apply MS-COCO [14]. Average Precision (AP) 
is used by both Pascal VOC and MS-COCO. The main diffe-
rences are the interpolation method, the IoU threshold, and 
Average Recall (AR) introduced in COCO. For more details, 
we refer to [22, 14]. AP is also often reported for each class  
[15, 7, 8, 21, 16, 11] or object size [14, 15, 7–9, 11] separately. 

AR is sometimes adjusted to better reflect the conditions of 
a particular dataset, e.g. VisDrone and AI-TOD report AR500 
and AR1500 respectively due to the large average number of 
objects per image. In Tiny Person, an IoU of 0.25 is used to 
emphasize that detection is more important than precise loca-
lization. In [8, 12, 13] the reduced effectiveness of the IoU in 
small object detection was shown. This is because the IoU is 
highly sensitive to position deviation when applied to small 
objects. The issue was solved by introducing the Normali-
zed Gaussian Wasserstein Distance (NWD), a Dot Distance 
(DotD), and the Receptive Field based Label Assignment 
(RFLA), respectively. All three methods are discussed in more 
detail in the following sections.

5. Tiny Object Detection Methods

In this section, we discuss the following groups of small and 
tiny object detection methods: Focus-and-Detect, Data-
-Augmentation, Sampling-Based, Attention-Based, Scale-
-Aware, Context-Aware, and Feature-Imitation Methods. The 
groups we use are similar to those defined in [11].

5.1. Focus-and-Detect Methods
Focus-and-detect methods are used to guide the detector to 
focus on the specific areas of high-resolution images. To incre-
ase the relative size of the object, high-resolution images can 
be processed using a sliding window [23–25]. In [23], the input 
image and the tiles obtained by dividing the input image are 
fed to the detector to maintain the detection quality for lar-
ger objects. In the end, the predictions from all windows are 
combined. The method presented in [25] integrates a super-
-resolution GAN into a simple slidingwindow pipeline. The use 
of a sliding window, however, is computationally sub-optimal. 
In aerial datasets, objects are often clustered in selected image 
areas, and a large portion of an image does not contain any 
objects. Therefore, [24] supports the sliding-window detec-
tion pipeline with additional neural networks that remove the 
background-only tiles. Many methods find the regions that 
are analyzed in detail in additional steps. The main differen-

Table 2. Comparison of the main characteristics of object detection datasets
Tabela 2. Porównanie głównych cech wybranych zbiorów danych do wykrywania obiektów

dataset data type object type labels images objects classes Simage Sobject

WIDER FACE 
[16]

natural scenes faces HBB 16,106 199,132 1 877±132 33±53

TinyPerson [9] aerial (UAV-based) people HBB 1,610 72,651 2 1540±527 19±23

SeaPerson [18] aerial (UAV-based) people HBB, CP 6,279 304,462 1 1456±207 23±13

SeeDronesSee [19] aerial (UAV-based) objects at sea HBB, MOT, 
SOT

10,477 67,390 5 2644±831 63±71

UAVDT [20] aerial (UAV-based) vehicles HBB, MOT, 
SOT

40,409 798,795 3 743±3 32±21

VisDrone [21] aerial (UAV-based) vehicles, pedestrians HBB, MOT, 
SOT, CC

8,599 471,266 10 1200±250 35±33

AI-TODv2 [8] aerial (mixed) multi-type HBB 14,008 376,625 8 800±0 13±6

DOTAv2 [22] aerial (mixed) multi-type HBB, OBB 2,422 349,675 18 3756±3536 33±49

xView [17] aerial (satellite-based) multi-type HBB 847 601,806 60 3148±317 35±40

SODA-A [11] aerial (satellite-based) multi-type OBB 2,513 872,069 9 3627±162 16±8

SODA-D [11] autonomous driving pedestrians, 
vehicles, etc.

HBB 24,828 278,433 9 2790±597 25±10
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ces between these approaches are how the tiles are generated, 
and whether the coarse and fine predictions are fused. [26, 27] 
divide the original images into several uniformly sampled tiles, 
and then select tiles for fine detection. Regular grid sampling, 
however, can lead to errors, since objects can lie on multiple 
tiles at the same time. In [28] a fine detection based on the 
prior coarse cluster proposals is introduced. Each selected tile 
can be divided or padded before resizing to maintain the scale 
of the objects. Zhang et al. [29] also use a coarse-to-fine appro-
ach, and the tiles are predicted by the Difficult Region Estima-
tion Network (DREN), but no scale prediction is performed. 
Similar approaches are proposed in [30–32], where either binary 
semantic segmentation [30] or density maps [31, 32] support 
the tiling process. Unlike [28, 29, 31], in [32, 30] only tiles are 
passed to the detector. Koyun et al [33] propose the Incomplete 
Box Suppression (IBS) algorithm to eliminate the influence of 
truncation on the tile-based detection quality. In [34], same as 
in [31, 29, 28, 23], the final detections are obtained by fusing 
the predictions from a global image and selected tiles. However, 
in [34] the initial detections are directly used to generate tiles 
in an unsupervised manner. Then, the anchorfree detectors are 
utilized to eliminate the negative impact of high variability in 
object sizes. In [35] tiles are generated with a deep reinforce-
ment learning strategy to handle variations in scales and sizes. 
During testing, final detections are obtained by merging the 
global image and tile outputs. Deng et al. [36] combine focus-
-and-detect with feature imitation, but unlike in [25], it scales 
only selected tiles, and the coarse detections are fused with 
predictions from tiles. The tiles are selected non-uniformly to 
deal with differences in scales and various aspect ratios.

5.2. Data Augmentation Methods
Data augmentation is commonly used in generic object detec-
tion to diversify the samples and reduce the risk of overfitting 
[1]. In this section, we have collected data augmentation meth-
ods developed specifically for detecting small objects. In [37], 
the authors duplicate images with small objects and perform 
a copy-paste operation on each of them to increase the number 
of small instances. This solution can increase the number of 
underrepresented samples, however, to avoid introducing extra 
noise, a semantic mask is required to precisely crop an object. 
Also, in many tasks, such as aerial imagery, objects tend to 
occupy specific areas in the image, and pasting them in random 
locations could degrade the results. To address these issues, [38] 
uses an additional semantic segmentation network to extract 
the road map from the UAV-taken image, and an object scale 
is also properly handled. In [39], input images are obtained by 
cropping a new image for each object. An even simpler crop-
ping strategy is used in [40], where the original image is split 
into several parts using a regular grid. Both of these methods 
also use multi-model fusion. In [40] two detectors are trained, 
one for classes with many instances, and the other for classes 
with sparse representation in the dataset. In [39], the division 
is made based on the image resolution. Another data augmen-
tation method has been proposed in [41], which uses Downsam-
pling-GAN (DS-GAN) to generate small synthetic objects from 
larger ones. The generated objects are then added and blended 
with the background.

5.3. Sampling-Based Methods
Sampling-based methods address the issues of anchor sam-
pling strategies in the detection of small objects. As pointed 
out in [42], the feature map for a small object contains too lit-
tle information, and the anchors are too large. Small objects 
also get very few matches, which has been linked to a prob-
lem in the anchor matching strategy. Due to multiple negative 
anchors, there is also an increased risk of false positives. In [42], 
the anchor association is performed at different depths of the 

backbone network to ensure proper representation and scale of 
anchors for different object sizes. An anchor-matching strategy 
is also adjusted by lowering the IoU threshold. A new anchor 
design, together with the Expected Max Overlapping (EMO) 
score, was proposed in [43] to increase the average IoU between 
objects and anchors. The authors reduce the stride of the anchor 
by enlarging the feature map, use shifted anchors, and randomly 
shift objects during training. In [44], the feature up-sampling, 
multi-level features, and an inception module are all combined 
to improve anchor sampling. [12, 13] introduce new metrics 
designed to replace an IoU in the label assignment process. The 
IoU has been observed to be very sensitive to location varia-
tions when applied to small objects. Thus, [12] proposed a Dot 
Distance (DotD) defined as a normalized Euclidean distance 
between two rectangles. Both [14] and [8] model the Gaussian 
Distributions of the bounding boxes. Xu et al. [13] measure 
the distance between these distributions with Kullback-Leibler 
divergence, while [8] uses the Normalized Wasserstein distance.

5.4. Attention-Based Methods
When dealing with tiny object detection in high-resolution 
images, the signal-to-noise ratio is particularly low, so many 
attention-based methods [44–49] were developed to suppress the 
background noise and highlight relevant features. These meth-
ods are often combined with the multi-level feature fusion [44, 
46–49] to enhance the feature representation of small objects. 
Yi et al. [45] use a Recurrent Neural Network (RNN) with 
attention to make the detector more focused on the relevant 
image areas, such as a road for cars, and a roadside for traffic 
signs. Attention-Guided Balanced Pyramid (ABP) introduced 
in [49] fuses features at different levels of the feature pyramid. 
The fusion is made adaptively with a two-part attention-based 
sub-net. The Level-Based Attention method (LA) is used to 
learn weights for each pyramid level, while the Spatial Attention 
Network (SA) highlights regions that do contain objects. [44, 
46, 47] adapt the channel attention mechanism based on the 
Squeezeand-Excitation (SE) Block [50] to highlight channels 
relevant to detection and suppress noise. Other attention-based 
blocks are pixel attention in [44], and spatial attention in [46]. 
[48] models the spatial relationship between pixel pairs.

5.5. Scale-Aware Methods
In tiny object detection, because of downsampling, the last fea-
ture map that is usually used for detection has little or no 
representation of these objects. To combine the rich seman-
tic information of deep features with the spatial information 
present in shallow layers, and to prevent the disappearance 
of small objects features, feature maps from different layers 
are used [51–54]. The scale-aware methods for detecting small 
objects are often based on the Feature Pyramid Network (FPN) 
[5], but introduce additional modifications to better handle the 
small-scale objects. In [51], global features are combined with 
multi-scale ROI features. Liu et al. [52] handle the misalign-
ment between deep and shallow features by introducing the 
Image Pyramid Transformation Module (IPGT). [53] proves 
that the simple FPN can have a negative impact on tiny object 
detection, and thus introduce a statistically estimated fusion 
factor to control how deep and shallow features are combined. 
In [54], an attention module is combined with a feature-fusion 
approach. The Context Attention Module (CAM) generates 
multi-scale attention heatmaps, while the Scale Enhancement 
Module (SEM) makes the detector focus on specific object scales 
in different layers. Features in subsequent layers are fused. Simi-
lar approaches that combine feature-fusion and attention-based 
techniques are [44, 46–49, 55]. [56] uses a feature pyramid pool-
ing to reduce false positives in high-resolution satellite images. 
In [57] a set of feature maps from different layers is processed 
and a new set of feature maps is fed to the detector head. DSFD 
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combines feature fusion with a sampling method to increase the 
number of positive anchors. Another approach is presented in 
[58], where instead of a feature pyramid, the authors proposed 
multiple detection modules, each for a feature map with a dif-
ferent stride. QueryDet [59], in a multi-stage process, fuses the 
lower-resolution features with the higher-resolution features to 
create a sparse feature map and filter-out background pixels. 
In [39] a multi-model fusion is applied – the authors use three 
detectors, each trained with images at different resolutions.

5.6. Context-Aware Methods
Since small objects contain little information, especially in the 
deep layers of the convolutional network, many efforts have 
been made to aid the detection using the contextual clues car-
ried by their surroundings [60–66]. In [60], a simple two-branch 
pipeline, built on top of R-CNN [2], was proposed. The object 
region proposal and its surrounding area are both encoded into 
a feature vector, concatenated, and then passed to the classi-
fication head. The Inside-Ouside Net (ION) [61] extracts the 
context features using the RNN, and fuses them with the multi-
scale ROI features for each region, which makes it both scale 
and context-aware. The method presented in [62] developed for 
tiny face detection tasks, also combines the scale-aware and con-
text-aware approaches. Multiple scales are handled by a coarse 
image pyramid and separate detectors for each scale that share 
the backbone weights. The context features are incorporated 
by enlarging receptive fields and introducing more background 
information. A receptive field can be increased by using skip 
connections as done in [67]. The authors also enhance the spatial 
information lost by using skip connections and thus help in the 
localization task. Tang et al. [63] use a semi-supervised learning 
strategy to additionally learn the important context classes, e.g. 
human body for face detection. The authors of [65] prove that 
ROI Pooling used in twostep methods has a negative impact on 
contextual information, therefore they propose a Context-Aware 
ROI Pooling method based on deconvolutions. The method is 
also scale-aware as it uses separate detection heads for each 
object size. In [66], a Context-Aware Detection Network (CAD-
Net) was introduced. It combines global context features with 
a pyramid of local context features and the attention module to 
detect small objects in satellite images. In [64], a spatial context 
information is used for the re-detection of low-confidence objects. 
This approach is based on the observation that in UAV images, 
distinctive classes are often clustered in separate areas of the 
image, so the class probabilities for low-confidence detections 
are updated based on the weighted distance from high-confi-
dence detections.

5.7. Feature-Imitation Methods
To enhance the poor representation of small objects, some meth-
ods [68–73] leverage recent advances in Generative Adversarial 
Networks (GANs). The authors of the Perceptual Generative 
Adversarial Network (Perceptual GAN) [68] point out the fact 
that simple feature enhancement made by adding the features 
extracted from the shallow layers is not always beneficial to the 
detection task. Instead of using a multi-level pyramid, feature, 
or image upsampling, a super-resolution approach has been pro-
posed to make the features of small objects similar to those of 
larger objects. A similar feature-level GAN approach is pre-
sented in [71], however, it also introduces direct supervision 
for the training process. [69] and [70] work directly on image 
regions extracted by baseline detectors. In [69] small, blurred 
faces are super-resolved by the generator. The classification loss 
is back-propagated to the generator. [70] extends this method 
to multi-class detection. The discriminator additionally outputs 
the class probabilities and offsets of the bounding boxes. Unlike 
[69], both the classification loss and the regression loss are used 
to train the generator. In [72, 73] the image-level super-reso-

lution methods are explored for detecting objects in satellite 
images. In addition to super-resolution methods at the image, 
feature, or region level, some methods perform feature imita-
tion in other ways. In [74], a Knowledge Distillation approach, 
called Self-Mimic Learning (SML), was introduced to improve 
the weak representation of small pedestrians. It uses the “mimic 
loss” to teach the features of small objects to be similar to those 
of larger objects. [75] handles the small pedestrian detection 
by mimicking the cued recall process in humans. It uses the 
embedding learning to help detect small objects by recalling 
the appearance of large objects. Unlike [74], clues from bigger 
instances can also be used during inference. A self-supervised 
learning approach was used in Self-supervised Feature Augmen-
tation Network (SFANet) [76]. During training, the backbone 
takes a pair of images (upsampled and downsampled) as input 
and uses features extracted from the larger image as guidance.

6. Quantitative Results

Among the datasets described earlier (Tab. 2), we selected 
VisDrone [20], and AI-TOD [7] due to their frequent use by 
authors of small object detection methods. In the case of Vis-
Drone, there are slight differences in labels between the 2018 
and 2019 versions. Additionally, it has become a common prac-
tice to use the validation subset for conducting tests, due to 
the delayed publication of the test subset and earlier utilization 
of the validation set by other authors. Therefore, we present 
metric values for each version separately – VisDrone18-val 
(Tab. 3) and VisDrone19-val (Tab. 4). For AI-TOD, the repor-
ted values relate to the test dataset (Tab. 5). In all compa-
risons, we used the metric values provided by the authors of 
each respective method. 

For the VisDrone2018 dataset (Tab. 3), among the three 
methods using ResNet50 or ResNet101 as a backbone, CDMNet 
achieves the best values for almost all metrics. CDMNet does 
not use coarse predictions, which may explain its lower APl. 
DMNet performs better than ClusDet, except for AP50 which 
is higher for ClusDet. The supreme value of AP50, with other 
metrics lowered, may indicate that ClusDet has some difficul-
ties with precise location. F&D [33] achieves the best results 
on the VisDrone2018 validation dataset, except for APl. Like 
CDMNet, F&D does not utilize coarse predictions, however the 
obtained APl value is much higher than CDMNet. Most likely, 
Incomplete Box Suppression used in F&D reduces the negative 
impact of region cropping on the quality of large object detec-
tion. The second best result (in terms of AP, AP50 and AP75) 
is achieved by SAIC-FPN, which does not report AP broken 
down by object size, so it is difficult to assess its effectiveness 
for small objects. Similar to CDMNet and F&D, SAIC also 
does not use coarse detections, however, due to the lack of APl, 
it is impossible to assess how this affects the detection of large 
objects. Second best APs and APm are achieved by CRENet with 
Hourglass as a backbone network. With a relatively lightweight 
backbone (DLA-34), CRENet still achieves competitive results. 
In Tab. 4 the VisDrone2019 results are shown, and AGDN has 
the highest metrics except for AP50. This method, however, uses 
a variety of components to improve detection quality. AGDN is 
the only one to report AP at different scales, so it is not possi-
ble to compare methods with respect to different object sizes. 
Most of the methods in Tab. 4 perform inference with a dif-
ferent input resolution, so it is difficult to isolate the effect of 
the method itself from the effect that an input size may have 
on the detection quality. Of the three metrics that have been 
introduced to replace the IoU, RFLA shows the highest quality 
on the AI-TOD test subset (Tab. 5), except for APm. The main 
difference between RFLA and NWD is the function used to mea-
sure the distance between Gaussian Distributions. As pointed 
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out in [13], NWD is not scale-invariant, which may explain the 
relatively low APvt and APt, and its superior performance for 
medium objects. DotD shows the worst quality among the three 
compared methods. It is also the simplest as IoU is replaced by 
the Normalized Euclidean Distance.

7. Conclusions and Future Work

In this work, we collected various size definitions and metrics 
used for evaluation of small and tiny object detection. We 
also described the challenging datasets, and compared them 

Table 3. Comparison of selected object detection methods on the VisDrone18-val dataset. We mark the first, second, and third best value for 
each metric
Tabela 3. Porównanie wybranych metod na zbiorze danych VisDrone18-val. Oznaczamy pierwszą, drugą i trzecią najlepszą wartość każdej metryki

method backbone AP AP50 AP75 APs APm APl

ClusDet [29] ResNet50 26.7 50.6 24.7 17.6 38.9 51.4

DMNet [32] ResNet50 28.2 47.6 28.9 19.9 39.6 55.8

CDMNet [33] ResNet50 29.2 49.5 29.8 20.8 40.7 41.6

ClusDet [29] ResNet101 26.7 50.4 25.2 17.2 39.3 54.9

DMNet [32] ResNet101 28.5 48.1 29.4 20.0 39.7 57.1

CDMNet [33] ResNet101 29.7 50.0 30.9 21.2 41.8 42.9

ClusDet [29] ResNeXt101 28.4 53.2 26.4 19.1 40.8 54.4

DREN [30] ResNeXt101 27.1 — — — — —

DMNet [32] ResNeXt101 29.4 49.3 30.6 21.6 41.0 56.9

CDMNet [33] ResNeXt101 30.7 51.3 32.0 22.2 42.4 44.7

F&D [34] ResNeXt101 42.0 66.1 44.6 32.0 47.9 54.5

SAIC-FPN [26] ResNeXt101 35.7 63.0 35.1 — — —

CRENet [35] Hourglass 33.7 54.3 33.5 25.6 45.3 58.7

RRNet [39] Hourglass — 61.1 32.9 — — —

CRENet [35] DLA-34 30.3 53.7 29.2 21.6 41.9 50.6

Table 4. Comparison of selected object detection methods on the VisDrone19-val dataset. We mark the first, second and third best value for 
each metric (⋆ methods using Cascade R-CNN)
Tabela 4. Porównanie wybranych metod na zbiorze danych VISDRONE19-VAL. Oznaczamy pierwszą, drugą i trzecią najlepszą wartość każdej metryki (⋆ 
metody korzystające z Cascade R-CNN

method backbone AP AP50 AP75 APs APm APl

AGDN [40] CSPDarknet53 41.8 66.1 43.6 33.7 54.2 59.4

AdaZoom [36] ResNet50 36.2 63.5 36.1 — — —

GLSAN [37] ResNet50 30.7 55.4 30.0 — — —

GLSAN⋆ [37] ResNet50 32.5 55.8 33.0 — — —

DeForm [41] ResNet50 30.1 58.0 27.5 — — —

RFEB⋆ [68] ResNet50 33.7 58.6 33.9 — — —

GLSAN [37] ResNet101 30.7 55.6 29.9 — — —

MPFPN⋆ [56] ResNet101 29.1 54.4 27.0 — — —

AdaZoom [36] ResNeXt101 37.6 66.3 37.3 — — —

AdaZoom⋆ [36] ResNeXt101 40.3 66.9 41.8 — — —

Table 5. Comparison of selected tiny object detection metrics on the AI-TOD test dataset
Tabela 5. Porównanie wybranych metryk do wykrywania bardzo małych obiektów na zbiorze testowym AI-TOD

method backbone AP AP50 AP75 APvt APt APs APm

DotD [12] ResNet50 14.9 38.5 9.3 7.2 16.1 17.9 23.7

RFLA [14] ResNet50 21.1 51.6 13.1 9.5 21.2 26.1 31.5

NWD [78] ResNet50 17.8 43.8 11.0 2.5 17.0 26.1 34.3
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taking into account both relative and absolute object size defi-
nitions. We gathered multiple methods targeting small and tiny 
object detection. We divided them into seven groups: focus-and-
-detect, data augmentation, sampling-based, attention-based, 
scale-aware, context-aware, and feature-imitation, and discus-
sed each approach extensively. We also presented quantitative 
results for selected methods. Focus-and-detect systems are suc-
cessfully applied to drone-based datasets as shown in Tab. 3 
and Tab. 4. These coarse-to-fine approaches are mainly used for 
high-resolution data with many tiny instances, however, due to 
the truncation effect, they tend to deteriorate the quality of lar-
ger objects. Based on the reported values, methods that support 
the detection process by using a global image tend to report 
higher APl. Incomplete Box Suppression used in [33] seems to 
significantly improve the quality of small and medium objects. 
RRNet [38], which introduces data augmentation focused on 
small objects, also shows promising results. The improvement 
in the detection quality for tiny objects is also observed for 
methods replacing IoU with other metrics, such as DotD [12], 
NWD [77] and RFLA [13]. Despite all efforts, it is difficult to 
accurately and reliably compare the methods based on the 
results presented by the authors. Different approaches use dif-
ferent backbones, input resolutions or additional components. 
Many of the methods studied use self-collected datasets, and 
even when a publicly available dataset is used, there are still 
variations in the versions and splits used for evaluation. In the 
future, we plan to analyze the most promising approaches on 
a common benchmark, taking into account the inference time, 
which is crucial in practical applications such as mobile robotics.
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Streszczenie: W ostatnich latach, dzięki rozwojowi metod uczenia głębokiego, dokonano 
znacznego postępu w detekcji obiektów i innych zadaniach widzenia maszynowego. Mimo że ogólne 
wykrywanie obiektów staje się coraz mniej problematyczne dla nowoczesnych algorytmów, a średnia 
precyzja dla średnich i dużych instancji w zbiorze COCO zbliża się odpowiednio do 70 i 80 procent, 
wykrywanie małych obiektów pozostaje nierozwiązanym problemem. Ograniczone informacje 
o wyglądzie, rozmycia i niski stosunek sygnału do szumu powodują, że najnowocześniejsze detektory 
zawodzą, gdy są stosowane do małych obiektów. Tradycyjne ekstraktory cech opierają się na 
próbkowaniu w dół, które może powodować zanikanie najmniejszych obiektów, a standardowe metody 
przypisania kotwic są mniej skuteczne w wykrywaniu instancji o małej liczbie pikseli. W niniejszej 
pracy dokonujemy wyczerpującego przeglądu literatury dotyczącej wykrywania małych i bardzo 
małych obiektów. Przedstawiamy definicje, rozróżniamy małe wymiary bezwzględne i względne oraz 
podkreślamy związane z nimi wyzwania. Kompleksowo omawiamy zbiory danych, metryki i metody, 
a na koniec dokonujemy porównania ilościowego na trzech publicznie dostępnych zbiorach danych.

Słowa kluczowe: uczenie głębokie, wykrywanie małych obiektów, wykrywanie bardzo małych obiektów, zbiory danych bardzo małych obiektów, metody 
wykrywania bardzo małych obiektów 
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