
Pomiary Automatyka Robotyka nr 12/2012 151

The application of VPython to visualization
and control of robot

Maciej Wochal, Dawid Cekus, Pawel Warys
Czestochowa University of Technology

Abstract: The idea of using VPython software environment (Python
programming language plus a 3D graphics module called Visual)
for visualization and control of robot movements is presented in the
paper. The control system has been worked out for walking robot,
which is building at Institute of Mechanics and Machine Design
Foundation of Technical University of Czestochowa. A method of
modeling and programming of robot operation control system has
been described. The used library to communication with external
devices allows easy control of an arbitrary number of mobile robotic
modules. The developed program allows for cooperation with any
servo controller and enables work in simulation mode of system
motion or control mode. In control mode, the control sequences
are sent in real time to the executive system and realized move-
ments are shown in the form of three-dimensional visualization on
a computer screen. User has the possibility of dynamic defining the
position of the separate or group of elements in the space, and the
change of velocity and position.

Keywords: walking robot, control system, Python

1.	 Introduction

This paper concerns the visualization of movements wor-
king (the actual position of robot components) and method
for controlling of walking robot, which is built as a part of
Scientific Society of Computer Aided Design of Mechatro-
nic Devices and Machines, and its main aim is the presen-
tation the Python programming language and libraries used
for implementation of these tasks.

On the current stage of work, the robot can be used as
manipulator (fig. 1), but in the future, the robot will be mo-
ved on two legs.

In Poland, as well as over the world a lot of scientific and
research centers deal with the issues concerning the walking
robot [1–4]. In the paper [4] the problem of conception and
building 4-legged walking robot intended for transport car-
go was presented. Starting from the structural synthesis of
leg the kinematic chain was developed, and the computer
calculation model was built. Considerations have been ta-
ken to develop programs and walking algorithms (straight,
a curve, by obstacles). The analysis was finished by simula-
tions testing the robot movement in order to verify the cor-
rectness of the solutions assumed.

Constructional solutions of walking robots are based ma-
inly on solutions observed in nature in humans, animals, or
insects. One example of this might be a solution where the
machine uses a tail to keep one’s balance. Analysis of the
gait stability of a man moving along an even surface with
a constant velocity is presented in article [5]. The stabili-
ty criteria applied to biped robots, namely: the Zero Mo-

ment Point (ZMP) and the Ground projection of the Cen-
ter Of Mass (GCOM) have been employed in the investiga-
tions. The analysis has been carried out on the basis of me-
asurement data obtained from the human gait recorded with
a digital camera.

2.	 Python programming environment

Python programming environment is a convenient and easy
tool to use for the completion of the prototype and rese-
arch works. The main advantages of Python are: simple and
clear syntax, a wide access to resources including informa-
tion, examples, and many ready libraries (including scientific

Fig. 1.	 Walking robot under construction
Rys. 1.	Budowany robot kroczący

Fig. 2.	 Exemplary objects found in the Visual library
Rys. 2.	Przykładowe obiekty występujące w bibliotece Visual

152

Nauka

applications), complete portability between different softwa-
re and hardware platforms, and the lack of licensing restric-
tions (open sources). In this paper Visual [6, 8, 9] (for visu-
alization) and pySerial (for serial communication) libraries
have been used.

Visual graphics library has many ready objects for im-
mediate use (fig. 2).

In addition, this library allows full automation of the 3D
scene management. Even the simplest program using Visual
library is equipped with functions of rotating and scaling of
the scene. Visual library allows achieving the intended objec-
tive by a very simple creation of complicated 3D programs
without a specialist programming knowledge.

A sample code – in Python and using Visual library – exe-
cuting cube rotation is presented below.

from visual import *
b = box()
while true:
→ rate(100) # reduce the number of frames to 100 per second
→ b.rotate(angle = pi/100)

In Python, instead of brackets (widely used in other pro-
gramming languages) indents (→) are used.

The second library used in this work is pySerial library,
which allows convenient use of serial ports (including virtual
ports). Establish communication between the computer and
external device comes down to a few simple instructions:

import serial
import library
port = serial.Serial(port name, speed)
opening of the port with predefined speed

After connecting, data to external devices can be sent, e.g.:

port.write(“hello”)

At the end, the port has to be closed:

port.close()

3.	 Model of the robot in the Python
programming environment

Model of the robot made in the Python programming en-
vironment was built with elementary solids (ready mod-
els), which Visual offers. However, there is the possibility of
creating your own components, or import from other pro-
grams, e.g. CAD, but in this case is necessary to write your
own functions.

A sample program code defining the function responsible
for modeling servomechanism is presented below.

def add_servo():

→ f=frame()
→ sphere(frame=f, color=color.red, radius=1)

Fig. 3.	 The basic elements modeled in Python
Rys. 3.	Podstawowe elementy zamodelowane z wykorzystaniem

środowiska Python

→ box(frame=f, length=40, height=40, width=20, pos=(10,-26,0),
color=(.2,.2,.2))

→ box(frame=f, length=54, height=6, width=20, pos=(10,-18,0),
color=(.2,.2,.2))

→ cylinder(frame=f, pos=(0,-6,0), axis=(0,4,0), radius=4)

→ cylinder(frame=f, pos=(0,-4,0), axis=(0,2,0), radius=5,
color=(.2,.2,.2))

→ cylinder(frame=f, pos=(0,-2,0), axis=(0,2,0), radius=11,
color=(.2,.2,.2))

→ return f

The modeled components that were used repeatedly are
shown in the fig. 3.

Fig. 4.	 The gripping device model
Rys. 4.	Model urządzenia chwytającego

Creating of a robot arm was divided into stages, where
first a model of the gripping device (fig. 4) was carried out
and placed in the next member, etc. The separate stages

Pomiary Automatyka Robotyka nr 12/2012 153

Fig. 6.	 The second step of joining elements
Rys. 6.	Drugi etap łączenia elementów

Fig. 7.	 The third stage of joining elements
Rys. 7.	Trzeci etap łączenia elementów

Fig. 8.	 The fourth stage of joining elements
Rys. 8.	Czwarty etap łączenia elementów

Fig. 9.	 The fifth step of joining elements
Rys. 9.	Piąty etap łączenia elementów

Fig. 10.	 The last stage of joining elements
Rys. 10.	 Ostatni etap łączenia elementów

Fig. 5.	 The first stage of joining elements
Rys. 5.	Pierwszy etap łączenia elementów

154

Nauka

of joining elements in one arm of the robot are illustrated
in the fig. 5–10. It should be note that each element has
a local coordinate system, which considerably facilitates
the control.

When the model is created and during the acting of sim-
ulation, components can be rotated by the method rotate(),
or can define a new position using the attribute pos. On
the ”lower level” it is implemented in a typical way for
OpenGL [7] – that is matrix operations. In this perspective,
the operations of translation, rotation and scaling consist
in multiplication of vertex coordinate vector by the corre-
sponding conversion matrix.

A single vertex can be described by a vector v:

	
1

x
y

=
z

 
 
 
 
 
 

v .	

The matrix of rotation around the X axis:

	

() ()
() ()

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

=
α α
α α

 
 − 
 
 
 

RXM .	

The matrix of rotation around the Y axis:

	

() ()

() ()

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

=

α α

α α

 
 
 
 −
 
 

RYM .	

The matrix of rotation around the Z axis:

	

() ()
() ()

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

=

α α
α α

− 
 
 
 
 
 

RZM .	

Translation matrix:

	

1 0 0
0 1 0
0 0 1
0 0 0 1

x

y

z

t
t

=
t

 
 
 
 
 
 

TM .	

Scaling matrix:

	

0 0 0
0 0 0
0 0 0
0 0 0 1

x

y

z

s
s

=
s

 
 
 
 
 
 

SM .	

Translation:
	 = ⋅Tv' M v .	
Scaling:
	 = ⋅Sv' M v .	
Rotation around the X axis:
	 = ⋅RXv' M v .	

4.	 Control of the robot components

Worked out computer program to control the movements of
the robot has a few operating modes:
–– manual – control with the keyboard and mouse, perfor-

med sequences of movements can be stored,
–– simulation – executing robot movements on the basis of

the loaded sequence,
–– automatic.

Three-dimensional user interface accompanies all mo-
des. The program automatically starts up in manual mode,
unless a parameter specifying the file with a record of the
motion sequence will be given during the start. The change
of mode can make at any time of the program. If the robot
is not connected to the computer, instead of the automatic
mode, the simulation mode will be run.

4.1. Control in manual mode
In order to interact with the user in manual mode,
keyboard procedure:
if scene.kb.keys:
→ k = scene.kb.getkey()
→ if k==’left’:
→ [determined operation]

and mouse procedure:

m = scene.mouse
if m.clicked:
→ object = m.picked

built in library of Visual have been used. These procedu-
res also allowed to significant simplification of the program.

In each loop, the program checks the status of HID
devices (Human Input Devices). Each keyboard key has an
associated own pair of signals, called „scancode. Pressing
any key generates an appropriate interrupt signal, which in
turn is handled by the subprogram to read and interpret the
keyboard buffer. If activity of user is detected, the program
checks whether the pressed key is used for controlling the
robot. After the identification pressed keys, control func-
tions of individual components position in the space and the
velocity change of position are activated.

Operation of mouse comes down to read the clicked
object ID, which at a later stage allows you to select the
active element of the robot. Information about clicked

Pomiary Automatyka Robotyka nr 12/2012 155

object concerns the lowest level. In order to determine to
which elements the clicked object belongs, the recurrent
searching of the relation between frames occurs.

A general algorithm of robot arm control is relatively
simple (fig. 11):
–– if the clicked object is in the frame grouping elements,

we make sure that the frame is one of the supported seg-
ments of the robot, if not – the same procedure to check
for the frame that contains the current element is perfor-
med – and so to the moment at which the first condition
is not fulfilled, or will be defined in which component the
clicked element occurs,

–– when they detect on which part of the robot was clicked,
activation takes, the color of part changes, and the requ-
ired variables are setting.
When the user presses on the keyboard the left or right

arrows, rotation of active part occurs (angle is set by using
the top and bottom arrows). Robot motion is carried out si-
multaneously in the virtual model, as well as the real object.

The sequence of movements performed by the user can
be saved by pressing:
[Enter] 	–  save the last operation,
[Space]	 –  adding a pause for 1 second to the list of opera-

tions to be performed,
[S] 	 –  save the list of operations in file.

4.2. Control in simulation or automatic mode
If the program is run in simulation or automatic mode
(fig. 12), then program gets down to the control mode and
executes the commands contained in the loaded script. If the
robot is not connected to the computer (simulation mode)
is performed only simulation (visualization of robot move-
ments on a computer screen).

Fig. 13.	 Servo Controller Mini Maestro 12-Channel USB Servo
Controller

Rys. 13.	 Sterownik serwomechanizmów Mini Maestro USB Servo
Controller

Fig. 12. 	 The modes of robot: a) simulation, b) automatic
Rys. 12. 	Tryby pracy robota: a) symulacyjny, b) automatyczny

Fig. 11.	 Robot control algorithm
Rys. 11.	 Algorytm sterowania robotem

5.	 Control of servomechanisms

Pololu Servo Controller USB Maestro (fig. 13) was used to
control of servomechanisms. With this driver, communica-
tion can take place on a serial port TTL (+5 V), which ena-
bles for example the Bluetooth adapter or a microcontrol-
ler connection, or via the USB cable seen by the computer
as a virtual serial port.

In order to set the selected servo to the chosen position,
connection with the driver must be made, and then con-
trol is based on the transfer of three-byte control instruc-
tion (fig. 14).

156

Nauka

Maciej Wochal

Student of Mechanical Engineering. Co-
founder member of Scientific Circle of
Computer Aided Design of Mechatronic
Devices and Machines. Scientific inter-
ests: programming, navigation and con-
struction of mobile robots, digital con-
trol systems.
e-mail: maciekwochal@o2.pl

Dawid Cekus, PhD

Adjunct professor at the Institute
of Mechanics and Machine Design
Foundation of Technical University of
Czestochowa. Tutor and co-founder
member of Scientific Circle of Com-
puter Aided Design of Mechatronic
Devices and Machines. Scientific inter-
ests: studying the dynamics of mechan-
ical systems, the use of genetic algo-
rithms in the modeling of machines and
their components.
e-mail: cekus@imipkm.pcz.pl

Pawel Warys, PhD

Adjunct professor at the Institute of
Mechanics and Machine Design Foun-
dation of Technical University of Czesto-
chowa. Author and co-author of several
publications from this field in national
journals. Scientific interests: static and
dynamics research of mechanical sys-
tems (especially the forest crane and its
subassemblies).
e-mail: warys@imipkm.pcz.pl

6.	 Conclusion

Despite the fact that all objectives were achieved, develo-
ped program in present form is not suitable for controlling
the whole walking robot, but only to control his arms. It is
difficult to imagine a machine control, consisting of more
than twenty servos using only a few buttons. Can thus for
instance define the direction in which the robot would have
to move, and the rest of the steps can be executed automa-
tically by the walking robot, but it will be still require a lot
of effort work on the algorithms that make it will be able to
move almost autonomously and control will consisted only
on determining some guidelines, and not the positioning of
each servo individually.

Acknowledgements

This work was carried out within Scientific Society of Com-
puter Aided Design of Mechatronic Devices and Machines.

Bibliography

1.	 Klaassen B., Linnemann R., Spenneberg D., Kirchner
F., Biomimetic walking robot SCORPION: Control and
modeling, “Robotics and Autonomous Systems”, 41,
2002, 69–76.

2.	 Ion I.N., Marin A., Curaj A., Vladareanu L., Design
and motion synthesis of modular walking robot MERO,
“Journal of Automation, Mobile Robotics & Intelligent
Systems”, vol. 2, no. 4, 2008, 25–30 .

3.	 Zhang X., Zheng H., Walking up and down hill with
a biologically – inspired postural reflex in a quadrupedal
robot, “Autonomous Robots”, 25, 2008, 15–24.

4.	 Bałchanowski J., Gąsieniec P., Budowa i badania symu-
lacyjne robota kroczącego, “Acta Mechanica et Automa-
tica”, vol. 4, 2010, 9–16.

5.	 Mrozowski J., Awrejcewicz J., Bamberski P., Analysis
of stability of the human gait, “Journal of Theoretical
and Applied Mechanics”, 45, 1, 91–98, Warsaw, 2007.

6.	 Scherer D., Dubois P., Sherwood B., VPython: 3D Inte-
ractive Scientific Graphics for Students, “Computing in
Science and Engineering”, 2000, 82–88.

7.	 Sterna W., Chodorowski B., OpenGL I wprowadzenie
do programowania gier, Wydawnictwo NAKOM, 2008.

8.	 [python.org].
9.	 [vpython.org].�

Fig. 14.	 The control data
Rys. 14.	 Instrukcja sterująca

Zastosowanie środowiska programistycznego
VPython do wizualizacji i sterowania robotem

Streszczenie: W pracy przedstawiono sposób wykorzystania
środowiska programistycznego VPython (język programowania
Python wraz z biblioteką graficzną Visual) do wizualizacji i ste-
rowania ruchami robota. Sposób modelowania oraz sterowania
został opracowany dla robota kroczącego, który jest budowany
w Instytucie Mechaniki i Podstaw Konstrukcji Maszyn Politechni-
ki Częstochowskiej. Do nawiązania połączenia między kompute-
rem, a modułami robota wykorzystano bibliotekę pySerial. Utwo-
rzony program umożliwia pracę w trybie ręcznym (sterowanie za
pomocą klawiatury i myszki z jednoczesną obserwacją sekwencji
ruchów w czasie rzeczywistym na monitorze komputera), symu-
lacyjnym (realizującym ruchy robota na podstawie wczytanej
sekwencji) lub automatycznym. Użytkownik ma możliwość dyna-
micznego definiowania prędkości oraz położenia pojedynczego
serwomechanizmu lub grupy serwomechanizmów.

Słowa kluczowe: robot kroczący, układ sterowania, Python

