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1. Introduction

The dynamics of many real physical phenomena can be descri-
bed by a set of subsystems and a logical rule that controls the 
switching between them [12]. Mathematical models of such 
systems are called switched systems. This class of dynamical 
systems has been considered since the end of the 20th century 
[4, 13].

The theory of switched systems is widely used in many engi-
neering problems related to mechanical systems, power elec-
tronic converters, electric power systems, multi-agent systems, 
the automotive industry, aircraft and air traffic control, and 
many other fields, see, e.g., [1, 5, 8, 16, 20].

Stability is one of the most important concepts in dynamical 
systems theory. The stability of the considered class of systems 
has been studied in many papers and books for: standard swit-
ched systems [4, 12–14, 17, 19, 22], positive switched systems 
[7,  25], singular switched systems [2, 26], as well as hybrid 
systems [4, 15, 17]. Moreover, in recent years, fractional-order 
switched systems have attracted much attention from resear-
chers and problems concerning the stability of such systems 
have also been studied [6, 9, 21, 23].

The literature also includes many works devoted to the con-
trol and stabilization of switched systems [12, 18, 24].

In this paper, the stability of continuous-time and discrete-
-time linear switched systems with time-dependent switching 
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will be investigated and some simple stability conditions for 
this class of dynamical systems will be established. It is assu-
med that it is possible to determine the relationship between 
the total switch-on time of individual subsystems. Moreover, 
the conditions presented for continuous-time systems are valid 
in the following cases: 1) there are no specific restrictions on 
the switching function if each switching interval is equal to 
or greater than 1 second; 2) the switching function has to be 
a periodic function (or a function describing permutations of 
identical sequences of subsystems) if at least one of the swit-
ching intervals is less than 1 second. In the case of discrete-
-time systems the switching function is arbitrary.

The paper is organized as follows. In Section 2 considered 
state-space models of switched linear systems are introduced 
and solutions to the state equations of such systems are provi-
ded. Section 3 is devoted to the stability analysis of switched 
systems. In this section, sufficient conditions for the stability 
are established. Numerical examples are presented in Section 
4. Concluding remarks are given in Section 5.

The following notation will be used:   – the set of real 
numbers, n m×

  – the set of n × m real matrices and 1,n n×=   
0≥  – the set of nonnegative integers.

2. Preliminaries

In this section considered state-space models will be presented 
and solutions to the state equations will be provided.

2.1. Continuous-time linear switched systems
Consider the continuous-time linear switched state-space model 
in the form

	 ( )( ) ( ),tx t A x tσ= 	  (1)

where ( ) nx t ∈   is the state vector, ( ) ,n n
tAσ

×∈   ( )tσ  is the 
piecewise constant switching function which takes values in 
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the finite set {1, 2, . . . , N} and N is the number of subsys-
tems. It is assumed that there are no jumps of the state vari-
ables at the switching instants ti, 0i ≥∈   and the ( )itσ -th 
system is active in the interval 1[ , ).i it t t +∈

It is well-known [10] that the solution to the equation (1) in 
the interval 1[ , )i it t t +∈  is given by

	
( ) ( )( ) ,t ii

A t t

ix t e xσ −
= 	  (2)

where ( ) n
i ix x t= ∈   is the initial condition at the switching 

instant ti, 0.i ≥∈ 

From (2) it follows that the initial conditions at the switching 
instants ti, 0i ≥∈   can be computed using the following recur-
sive formula

	
( )

1 1( ) ,t ii
A t

i i ix x t e xσ ∆

+ += = 	  (3)

where

	 1 .i i it t t+∆ = − 	  (4)

Using the equation (3) for i = 0 we obtain

	
( ) 00

1 0.
tA tx e xσ ∆

= 	  (5)

From the formula (3) for i = 1 and (5) we have

	
( ) 0( ) 1 ( ) 1 01 1

2 1 0.
tt t A tA t A tx e x e e xσσ σ ∆∆ ∆

= = 	  (6)

We can continue this procedure for 2.i ≥

Therefore, the initial condition n
ix ∈   at i-th switching 

instant ti, 0i ≥∈   for known initial condition 0
nx ∈   and pre-

vious switching instants t0, . . . , ti–1 is given by the formula

	
( ) 1 ( ) 2 ( ) 01 2 0

0,
t i t i ti i

A t A t A t

ix e e e xσ σ σ− −− −
∆ ∆ ∆

=  	  (7)

where it∆  is defined by (4).

Thus, from equations (2) and (7) we obtain the following solu-
tion to the state equation (1).

Lemma 1. The solution to the equation (1) for known initial 
condition 0

nx ∈   and switching instants ti, 0i ≥∈   is given 
by the formula

	
( ) ( ) 1 ( ) 01 0

( ) ( ) ( )

0( ) ,t i t i ti i
A t t A t A tx t e e e xσ σ σ−−

− ∆ ∆
=  	  (8)

where it∆  is defined by (4).

2.2. Discrete-time linear switched systems
Consider the discrete-time linear switched state-space model 
in the form

	 1 0, ,
kk kx A x kσ+ ≥= ∈  	  (9)

where n
kx ∈   is the state vector, ,

k

n nAσ
×∈   kσ  is the swit-

ching function which takes values in the finite set {1, 2, . . . , N}  
and N is the number of subsystems. It is assumed that the  

ik
σ -th system is active in the interval 1[ , )i ik k k +∈  and the ini-
tial condition of that system is the final value of the state vec-
tor in the previous switching interval 1[ , ).i ik k k−∈

It is well-known [10] that the solution to the equation (9) in 
the interval 1[ , )i ik k k +∈  is given by

	
,i

ki

k k
k ix A xσ

−= 	  (10)

where ( ) n
i ix x k= ∈   is the initial condition at the switching 

instant ki, 0.i ≥∈ 

For discrete-time systems, one can present considerations ana-
logous to those introduced in Section 2.1. Therefore, the initial 
conditions n

ix ∈   at the switching instants ki, 0i ≥∈   can be 
computed either from the recursive formula

	 1 1( ) i

ki

k
i i ix x k A xσ

∆
+ += = 	  (11)

or the equation

	
1 2 0

1 2 0
0,i i

k k ki i

k k k
ix A A A xσ σ σ

− −

− −

∆ ∆ ∆=  	  (12)

where

	 1 .i i ik k k+∆ = − 	  (13)

Thus, from (10) and (12) we obtain the following solution to 
the state equation (9).

Lemma 2. The solution to the equation (9) for known initial 
condition 0

nx ∈   and switching instants ki, 0i ≥∈   is given 
by the formula

	
1 2 0

1 2 0
0,i i i

k k k ki i i

k k k k k
kx A A A A xσ σ σ σ

− −

− −

− ∆ ∆ ∆=  	  (14)

where ik∆  is defined by (13).

3. Stability of linear switched systems

In this section sufficient conditions for stability of continuous-
-time and discrete-time switched linear systems will be esta-
blished.

To obtain the stability conditions the following norms will 
be used:
1) ∞-norm of a vector [ ] n

ix x= ∈ 

	 1
max ,ii n

x x
≤ ≤

= 	  (15)

2) ∞-norm of a matrix [ ] n n
ijA a ×= ∈ 

	
1 1
max .

n

iji n j
A a

≤ ≤ =

 
=   

 
∑ 	  (16)

In the following considerations we will use well-known opera-
tions on norms of vectors and matrices [11].

We also assume that it is possible to determine the relation-
ship between the total switch-on time of individual subsystems 
of the switched systems (1) and (9). Moreover, the conditions 
presented for continuous-time systems are valid in the follo-
wing cases:
1)	there are no specific restrictions on the switching function 

( )tσ  if each switching interval 1,it∆ ≥  0;i ≥∈ 
2)	the switching function has to be a periodic function (or 

a function describing permutations of identical sequences 
of subsystems) if at least one of the switching intervals 

1.it∆ <

In the case of discrete-time systems the switching function 
is arbitrary.
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If the number of switching instants is finite, testing the sta-
bility of the switched system is reduced to testing the stabil-
ity of the last active subsystem using methods known in the 
literature for standard linear systems [3, 10].

3.1.	 Stability of continuous-time switched 
systems

Definition 1. The continuous-time switched system (1) is called 
asymptotically stable if

	
lim ( ) 0,
t

x t
→∞

= 	  (17)

for all initial conditions 0 .nx ∈ 

From (8) we have

	

( ) ( ) 00

( )

( ) ( )

0

0
0

lim ( ) lim

.

t i ti

t ii

A t t A t

t t

A t

i

x t e e x

e x

σ σ

σ

− ∆

→∞ →∞

∞ ∆

=

=

 ≤  
 ∏



	  (18)

Let us introduce 0,jT ≥ Tj > 0, j = 1, ..., N, which denotes 
the total switch-on time of the j-th subsystem and observe that

	 1 1 1
, 1,

N N N

j j j
j j j

t T c t c
= = =

= = =∑ ∑ ∑ 	  (19)

where 0,jc ≥  j = 1, . . . , N is the relative total switch-on time 
of the j-th subsystem. Therefore, the inequality (18) can be 
rewritten as

	

0
1

0
1

lim ( )

.

j
j

j
j

N TA

t j
N c tA

j

x t e x

e x

→∞
=

=

 
≤  

 
 

=  
 

∏

∏
	  (20)

The above considerations are valid in the following two cases:
1)	 for the switching intervals satisfying 1,it∆ ≥  0i ≥∈   we 

have

	
( ) ( )

i
t i ti i

tA t Ae eσ σ
∆

∆
≤ 	  (21)

and the inequality (20) holds for an arbitrary switching 
function ( );tσ

2)	 for any switching interval satisfying 1it∆ <  we have

	
( ) ( )

i
t i ti i

tA t Ae eσ σ
∆

∆
≥ 	  (22)

and the inequality (20) holds only for a periodic switch-
ing function ( )tσ  (or a switching function describing 
permutations of identical sequences of subsystems).

Therefore, we obtain lim ( ) 0
t

x t
→∞

=  if

	 1
lim 0

j
j

N c tA

t j

e
→∞

=

=∏ 	  (23)

and this implies

	 1
1.

j
j

N cA

j

e
=

<∏ 	  (24)

Thus, the following theorem has been proved.

Theorem 1. The continuous-time switched system (1) is asymp-
totically stable if the switching function ( ) :tσ

1)	 is any function satisfying the condition (24) for 1,it∆ ≥  
0;i ≥∈ 

2)	 is a periodic function (or a function describing permuta-
tions of identical sequences of subsystems) satisfying the 
condition (24) for at least one 1,it∆ <  .

3.2. Stability of discrete-time switched systems
Definition 2. The discrete-time switched system (9) is called 
asymptotically stable if

	
lim 0kk

x
→∞

= 	  (25)

for all initial conditions 0 .nx ∈ 

The analysis can be performed in a similar way as for con-
tinuous-time systems. From (14) we have

	

1 0

1 0

0
0

lim lim

.

i i

k k ki i

i

ki

k k k k
kk k

k

i

x A A A

A x

σ σ σ

σ

−

−

− ∆ ∆

→∞ →∞

∞
∆

=

=

 ≤  
 ∏



	  (26)

Introducing 0,jK ≥  j = 1, . . . , N as the total switch-on time 
of the j-th subsystem and noticing that

	 1 1 1
, 1,

N N N

j j j
j j j

k K d k d
= = =

= = =∑ ∑ ∑ 	  (27)

where 0,jd ≥  j = 1, . . . , N is the relative total switch-on time 
of the j-th subsystem, the inequality (26) can be rewritten as

	

0
1

0
1

lim

.

j

j

N K

k jk j
N d k

j
j

x A x

A x

→∞
=

=

 ≤  
 

 =  
 

∏

∏
	  (28)

The switching intervals always satisfy the condition 1,ik∆ ≥  
0i ≥∈   since 0.k ≥∈   Therefore, the inequality (28) always 

holds for an arbitrary switching function kσ  since

	

i
i

k ki i

k
kA Aσ σ

∆
∆ ≤ 	  (29)

for 1,ik∆ ≥  0.i ≥∈ 

Thus, we obtain lim 0kk
x

→∞
=  if

	 1
lim 0j

N d k

jk j
A

→∞
=

=∏ 	  (30)

and this implies

	 1
1.j

N d

j
j

A
=

<∏ 	  (31)

Therefore, the following theorem has been proved.

Theorem 2. The discrete-time switched system (9) is asympto-
tically stable if the switching function kσ  is any function satis-
fying the condition (31).
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3.3. Discussion
The conditions given in Theorems 1 and 2 take advantage of the 
fact that the stability of switched systems depends mainly on 
the form of the switching function. The topic of stable switched 
systems composed of stable and unstable subsystems is well-
-known and widely discussed in the literature [14]. Therefore, 
an adequate ratio of the switch-on times of the individual sub-
systems must be ensured.

Due to the above, methods based on analyzing the position of 
the system poles on the complex plane do not apply to switched 
systems. Thus, the conditions proposed in the article are based 
on bounding the norm of the state vector. The undoubted advan-
tage of this approach is its simplicity allowing the investigation 
of switched systems with various configurations, consisting of 
both stable and unstable subsystems, as long as the condition 
of the switch-on times ratio for individual subsystems is met.

However, the actual stability region boundaries of the switched 
system may be located further than the calculations result, as 
the conditions are obtained through the use of matrix norms 
inequalities. Therefore, it is an open problem to provide the 
necessary conditions for the stability of switched systems using 
the presented method. Furthermore, extending the analysis to 
a wider group of switching functions for the case of continu-
ous-time systems with faster switching (with time intervals less 
than 1 second) is also an open issue.

4. Numerical examples

Example 1. Consider the continuous-time linear switched sys-
tem (1) consisting of N = 3 subsystems with the state matri-
ces given by

1 2 3

3 0 2 3 2 0 5 1 0

3 4 6 , 2 3 1 , 3 2 1 .

2 1 5 0 1 2 1 0 2

A A A

     − − −
     
     

= − = − = −     
     
     − − −     

	
	
	
	

(32)

It is easy to check that only the first subsystem is stable, while 
the other two are unstable. We compute the norms

	
31 20.045, 18.1813, 9.0262.AA Ae e e= = = 	  (33)

From (19), (24) and (33) we obtain

	

31 2

1 2 3

0.045 18.1813 9.0262 1

1.

cc c

c c c

 ⋅ ⋅ <

 + + =

	  (34)

Therefore, the switched system (1) with (32) will be asymp-
totically stable if the switching function ( )tσ  satisfies the con-
dition (34), i.e., the ratio of the switch-on times of subsystems 
will be c1 : c2 : c3 such that (34) holds.

For further analysis we assume c1 = 0.5, c2 = 0.2, c3 = 0.3 
satisfying (34) and we define the switching function as

	

)

)

)
0

2, , 0.2 ,

( ) 1, 0.2, 0.7 , .

3, 0.7, 1 ,

t l l

t t l l l

t l l

σ ≥

 ∈ +


= ∈ + + ∈ 

 ∈ + +

 	  (35)

In Figure 1 we present time plots of the state variables of 
the continuous-time linear switched system (1) with (32) for 
x0 = [ 4 2 5 ]T and the time plot of the switching function ( )tσ  
given by (35). We can see that the state variables tend to zero. 
Similar results can be obtained for any other initial condition 
x0 and for any switching function ( )tσ  satisfying the  
condition (34).

Example 2. Consider the discrete-time linear switched system 
(9) consisting of N = 2 subsystems with the state matrices 
given by

1 2

0.7 1.1 0.4 0.6 0 0.1

0.8 0.9 0.2 , 0.3 0.3 0 .

0.5 1.2 0.1 0.1 0.1 0.4

A A

   
   
   

= =   
   
   
   

	  (36)

It is easy to check that the first subsystem is unstable and the 
second one is stable. We compute the norms

	 1 22.2, 0.7.A A= = 	  (37)

00 .5 11 .5 22 .5 33 .5 4
-2

0

2

4

6

8

10

00 .5 11 .5 22 .5 33 .5 4

1

2

3

Fig. 1. State variables (up) and the switching function (down) of the 
continuous-time linear switched system (1) with (32) for x0 = [ 4 2 5 ]T

Rys. 1. Zmienne stanu (u góry) i funkcja przełączająca (u dołu) liniowego 
ciągłego układu przełączalnego (1) o macierzach (32) dla x0 = [ 4 2 5 ]T

Fig. 2. State variables (up) and the switching function (down) of the 
discrete-time linear switched system (9) with (36) for 0x  = [ 1 2 3 ]T

Rys. 2. Zmienne stanu (u góry) i funkcja przełączająca (u dołu) liniowego 
dyskretnego układu przełączalnego (9) o macierzach (36) dla 0x  = [ 1 2 3 ]T

01 02 03 04 05 06 0
0

2

4

6

8

01 02 03 04 05 06 0

1

2
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From (27), (31) and (37) we obtain

	

1 2

1 2

2.2 0.7 1

1.

d d

d d

 ⋅ <

 + =

	  (38)

Therefore, the switched system (9) with (36) will be asymp-
totically stable if the switching function kσ  satisfies the con-
dition (38), i.e., the ratio of the switch-on times of subsystems 
will be d1 : d2 such that (38) holds.

For further analysis we assume d1 = 0.3, d2 = 0.7 satisfying 
(38) and we define the switching function as

	

{ }

{ }

1, mod10 0,1,2 ,

3, mod10 3,4, ,9 ,
k

k

k
σ

 ∈
= 
 ∈ 

	  (39)

where mod denotes the modulo operation.

In Figure 2 we present time plots of the state variables of 
the discrete-time linear switched system (9) with (36) for 

0x  = [ 1 2 3 ]T and the time plot of the switching function 
kσ  given by (39). We can see that the state variables tend 

to zero. Similar results can be obtained for any other initial 
condition 0x  and for any switching function kσ  satisfying 
the condition (38).

5. Concluding remarks

In this paper, the stability of continuous-time and discrete-
-time linear switched systems with time-dependent switching 
has been investigated. Solutions to the state equations of such 
systems have been provided (Lemmas 1 and 2). The main 
result of the paper is the establishment of sufficient condi-
tions for the stability of the continuous-time (Theorem 1) and 
discrete-time (Theorem 2) linear switched systems. The effec-
tiveness of the presented approach has been demonstrated by 
numerical examples.

The conditions proposed in the article are based on the 
matrix and vector norms calculus since the methods using the 
analysis of the position of the system poles on the complex 
plane do not apply to switched systems. The undoubted advan-
tage of this approach is its simplicity allowing the investigation 
of switched systems with various configurations, consisting of 
both stable and unstable subsystems, as long as the condition 
of the switch-on times ratio for individual subsystems is met.

The considerations can be further extended to fractional-or-
der linear switched systems. Establishing the necessary condi-
tions for the stability of this class of dynamical systems based 
on the presented methodology also remains an open prob-
lem. Furthermore, extending the analysis to a wider group of 
switching functions for the case of continuous-time systems 
with faster switching (with time intervals less than 1 second) 
is also an open issue.
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Streszczenie: W artykule zbadano stabilność ciągłych i dyskretnych liniowych układów 
przełączalnych z przełączaniem zależnym od czasu. Podano rozwiązania równań stanu i wyznaczono 
warunki wystarczające stabilności takich układów. Warunki przedstawione dla układów ciągłych są 
słuszne w następujących przypadkach: 1) nie ma szczególnych ograniczeń na funkcję przełączania, 
jeżeli każdy przedział czasu w kolejnych przełączeniach jest nie krótszy niż 1 sekunda; 2) funkcja 
przełączająca musi być funkcją okresową (lub funkcją opisującą permutacje identycznych sekwencji 
załączanych podukładów), jeżeli co najmniej jeden z przedziałów czasu w kolejnych przełączeniach 
jest krótszy od 1 sekundy. W przypadku układów dyskretnych funkcja przełączająca jest dowolna. 
Skuteczność zaprezentowanego podejścia pokazano na przykładach numerycznych.

Słowa kluczowe: ciągły, dyskretny, liniowy, układ przełączalny, stabilność, przełączanie zależne od czasu
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