
Zezwala się na korzystanie z artykułu na warunkach
licencji Creative Commons Uznanie autorstwa 4.0 Int.

1. Introduction

One of the key enablers of robotic autonomy is the robot’s
ability to perceive its surroundings. Observation of the envi-
ronment is realised by means of a multitude of onboard sensors
combined into a perception system. In the context of mobile
robots, what the robot perceives is directly propagated to
the navigation system. Sensors inputs are utilised to estimate
achievable space in the environment to plan actions (trajecto-
ries) of the robot in short- and long-time perspectives. There-
fore, the ability to navigate efficiently highly depends on the
sensors’ choice and how they are deployed. In this paper, we
formulate three key aspects that allow the creation of a suc-
cessful end-to-end perception solution. Our proposal focuses
solely on the 3D data in the format of point clouds which are

Autor korespondujący:
Konrad Cop, konrad.cop@unitedrobots.co

Artykuł recenzowany
nadesłany 08.10.2024 r., przyjęty do druku 16.01.2025 r.

Perception Systems for Autonomous Mobile Robots:
Selecting and Mitigating Limits
Konrad Cop 1, 2, Morteza Haghbeigi 1, 2, Marcin Gajewski 2, Tomasz Trzciński 1
1 Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
2 United Robots Sp. z o.o., ul. Świeradowska 47, 02-622 Warszawa

Abstract: A well-designed perception system is crucial for the proper operation of an
autonomous mobile robot however it is not trivial to engineer. For a comprehensive system not only
the sensors’ features must be considered but also the way their data are utilised for robotic
operation. In this paper, we present a set of tightly coupled strategies that allow the creation of
an end-to-end perception system utilising 3D representation in the form of point clouds. Our
proposal is generic enough to be applied to various mobile robots as it is aware of the context of
robotic operation and accounts for hardware constraints. As the first strategy, we introduce
a formalised sensors selection process formulated as a multi-objective optimization problem with
metrics relaxation which allows to choose an optimal set of sensors within budgetary limitations.
Secondly, we validate various data filtration strategies and their combination in the context of
the navigation system to find a trade-off between accuracy and computational effort. Finally, to
mitigate the suboptimal field of view of combined sensors and augment the perception system we
introduce a new concept for the occupancy grid layer which utilises motion information in
the occupancy calculation. For these strategies, we conduct experimental verification and apply
the results in an autonomous cleaning robot.

Keywords: Robotic Perception, Autonomous Robots, Robotic Sensors, Robotics, Navigation, Data Filtration

commonly used in robotic perception systems due to their
effectiveness in representing complex environments.

The first aspect which must be considered is that the cho-
ice of the sensors that would satisfy multiple, often contradic-
ting requirements is not trivial. Depending on the mechanical
design of the robot, characteristics of the robotic process,
features of the environment, and budgetary limitations, various
combinations of sensors can be selected. So far the selection
process has usually been considered case-specific, for example,
Shi et al. designed a perception system for a humanoid robot
[1] while Deshpande et al. tackled a designated mobile platform
[2] but no generic approach was proposed. Others proposed to
compare sensors solely such as different LiDAR solutions [3]
or RGBD cameras [4,  5] without deeply considering the appli-
cation. Instead of going this path, we propose to formulate
the selection process as an iterative procedure that takes into
account multiple “nice-to-have” requirements of the application
and optimizes the costs of the solution. The process is formally
defined and was used already for selecting a sensor rig for an
autonomous cleaning robot.

Secondly, each sensor is a piece of hardware that has some
production irregularities and detection inaccuracies, which lead
to more or less noisy data. Using such data would cause the
robot to experience unstable operation. Therefore, proper fil-
tration mechanisms are required to improve the behaviour of
the robot. Additionally, depending on the sensor, the incoming
data might be very dense or contain redundant information,

5

Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 29, Nr 1/2025, 5–16, DOI: 10.14313/PAR_255/5

which potentially leads to unnecessary utilisation of compu-
tational resources when using such information for naviga-
tion. Multiple works were conducted in this regard to propose
filtration strategies for purposes of object reconstruction [6,
7] or 3D video streaming [8] and this is a well-explored field.
However, in the context of mobile robots with limited onboard
resources, it is not only important how well the filtration pro-
cedure performs but also how efficient it is. Therefore in this
paper, we evaluate the influence of various filtration methods
and their combination on the process efficiency.

Finally, as most robotic projects usually face budgetary limi-
tations, purchasing enough sensors to satisfy all requirements
might not be feasible. As a result, some criteria must be sacri-
ficed. Based on practical experience, a common consequence
of this limitation is the incomplete spatial coverage provided
by the selected sensors, which fails to fully capture the robot’s
entire surroundings. This, in turn, makes navigation particu-
larly challenging, as the reduced sensor coverage compromises
the safety and reliability of the robot’s movement through
its environment. With inadequate hardware, one could utilise
the software to fill in the gap. Few approaches have been pro-
posed to address similar challenges, but they primarily focus
on developing local planners or controllers that calculate col-
lision-free trajectories based on limited sensing capabilities,
such as maximum sensor range [9, 10]. These methods often
assume a 2D field of view, where obstacles within this plane
are guaranteed to be detected. However, this assumption does
not hold in 3D environments, where detecting blind spots is far
more complex. For instance, Phan et al. introduced a decision-
-making module for robots with limited sensing capabilities,
which enables collision avoidance based on partial detections
in 2D [11]. Despite these advancements, none of these appro-
aches have fully explored the use of spatio-temporal informa-
tion for generating navigation occupancy maps, which could
significantly enhance the reliability of autonomous navigation.
We therefore, propose to utilise the information from both the
sensor’s returns and the robot’s motion to accumulate the rele-
vant information by means of a Hit Layer.

The three aforementioned strategies are interrelated and
essential when creating a perception system for a mobile robot
in an end-to-end manner. The combined analysis constitutes
the contribution of this paper which includes three aspects:
−	 We propose an iterative, generic process for selecting

sensors for any mobile robot.
−	 We evaluate combinations of various filtration algorithms

in terms of their computational efficiency.
−	 We introduce an approach for utilising perception and

motion information into occupancy estimation by means
of a newly proposed Hit Layer.

The following sections describe the contributions in details.

2. Selection of sensors

Selecting an appropriate sensor rig for mobile navigation is not
a trivial task and it depends on multiple factors related to both
robot’s mechanical features (e.g. dimensions and inertia) and
application specifics, which may lead to contradicting require-
ments. For example, one might require high resolution of data
and simultaneously low hardware costs. Better-quality sensors
are typically more expensive. In such a situation, a question
arises of which parameters should be sacrificed. To facilitate
the decision, we introduce a selection process that takes into
account multiple aspects and formulate it as a multi-objective
optimization problem with metrics relaxation. The overview
of the process is depicted in Fig. 1. The base of our propo-
sal is the definition of eight Application Requirements and six
Sensor Features which are the starting point for the selection

process. Careful analysis of these two groups of parameters
allows us to formulate Rig Selection Metrics which are quan-
titative expressions of the system requirements. The metrics
are split into Satisficing Metrics which aim to define boundary
selection conditions for the sensors and the Optimizing Metric
which allows finding the best constrained solution.

The selection process should be conducted as follows. At the
start, one should define the set of most desirable parameters
of the complete rig i.e. the most strict Satisficing Metrics for
which the knowledge about the Application Requirements and
the Sensor Features should be used. At this stage, multiple
sensors can be considered. Details are described in Sections  2.1
and 2.2. Very likely, at the first step, multiple high-quality
devices will be picked, but the choice implies the costs of both
the sensors and the hardware to process the data arriving
from them. This leads to the initial value of the solution costs,
which we define as the Optimizing metric. If, after the first ite-
ration, the result is within the budgetary limit of the project,
the selection can be directly used for the robot’s sensor rig.
If not, one must repeat the process, by iteratively relaxing the
Satisficing Metrics until the reasonable cost level is reached.

2.1. Application requirements definition
To be able to specify the needs of the application, we propose
to characterise the intended system according to the following
requirements (for the extended names and process scheme
refer to Fig. 1):
R1	 The physical dimensions of the robot and the required

area that should be perceived constantly around it need
to be defined.

R2	 Kinematics and the intended direction of the robot
motion should be considered. E.g. if the robot travels
forward only, a sensor on the back is redundant.

R3	 It is also important to match how quickly and how far the
robot can see with the application it is intended to. For
example, if the robot is supposed to detect dead-ends on
the fly, while travelling across a complex combination of
corridors, both the range and the frequency should allow
correct decisions. This metric is coupled heavily to the
environment characteristics and path planning algorithm
used by the robot.

R4	 Various objects in the environment can appear in the
robot’s surroundings rapidly or slowly. It is important to
ensure that the frequency of observation (the frame rate)
is fast enough to notice object dynamics, i.e. that the
robot can notice the motion of the object quickly enough
to react [12].

R5	 Similarly, the frame rate should be adjusted to the robot’s
velocity. Distance travelled between consecutive observa-
tions should be small enough to allow the robot to replan
the path and avoid obstacles on the way.

R6	 The resolution of the sensor should be high enough to
notice the tiniest objects that can endanger the robot. For
example, if the environment is full of hanging, thin cables
the sensor must be able to reflect them in the perceived
point cloud [13].

R7	 This requirement expresses how accurately the objects
should be perceived by the robot to safely conduct its
operation. Low-quality sensors might experience dis-
tortion that influences reconstruction accuracy, which,
depending on the application, might become harmful.
As an example, a sensor might not be considered flat the
surfaces that actually are flat [14].

R8	 The lighting in the environment has a direct impact on
a sensor’s performance. If the robot is supposed to work
with limited light or in darkness, the sensors’ visible light
spectrum must be selected accordingly, potentially with
active projection [15].

6

Perception Systems for Autonomous Mobile Robots: Selecting and Mitigating Limits

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 1 /2025

2.2. Sensors features
Comparison of different sensors exceeds the scope of this paper,
as the variety of available solutions is massive. There exists
multiple publications on sensor types and technologies. Spe-
cifically detailed description and comparison can be found in
[16, 17]. A comprehensive explanation of various characteri-
stics of sensors in [18], Chapter 4. To be able to conduct the
analysis process, the following features of potential sensors
should be considered:
−	 Range: what is the distance at which the sensor can effec-

tively notice an object
−	 FOV: Field Of View, defines the shape of the perception

space. Usually a pyramid or cone.
−	 Frequency: (alternatively Frame Rate), a notion of how

often the sensor can receive views of the environment.
−	 Resolution: how many discrete points are available per

single scan and FOV cross-section. Usually, drops with
the range.

−	 Noise and accuracy: expresses the noise level and ability
to precisely reconstruct object shapes.

−	 Perception Technology: how is the point cloud generated
e.g. Stereo Camera (passive), Structured Light (active),
Time Of Flight (active) etc.

2.3. Satisficing metrics
Having analysed Application Requirements and Sensor
Features one can conclude five metrics that are intended to
define the “No-go” limits of the selection. In other words,
Satisficing metrics are the system’s minimum requirements
at the given selection process iteration. The list includes
(brackets explain the corresponding units):
−	 Spatial Coverage SC [% of coverage], described in details

in the following section.
−	 Resultant Frequency F [Hz], encompasses the publica-

tion frequency of all sensors (i.e. how often new data is
observed) and expresses the combined metric as the fre-
quency of the slowest sensor.

−	 Resultant Resolution R [mm], expressed as the resolution
of the lowest-resolution sensor at the distance of interest.

−	 Resultant Noise N [mm], expressed as the noise level of
least accurate sensor.

−	 Light Fluctuations Immunity L [binary], we propose as
binary metric whether the sensor can handle given lighting
conditions.

R1: Robot's exterior
and footprint

R2: Type of possible
motion

APPLICATION
REQUIREMENTS RIG SELECTION METRICS CORRELATED

SENSORS' FEATURES

Spatial coverage
(overall)

SC ≥ SCmin
R3: Spatio-temporal

characteristics
Resultant

frequency (slowest
sensor)

F ≥ Fmin

R4: Dynamics of objects
in the environment

R5: Robot's speed

R6: Size and character
of obstacles

R7: Accuracy of objects
reconstruction

R8: Light conditions in
the environment

Light fluctuations
immunity (least immune

sensor) L ≥ Lmin

SATISFICING
METRICS

Frequency

Range

FOV

Perception
technology

Noise /
Accuracy

Resolution

SENSOR
1

Frequency

Range

FOV

Perception
technology

Noise /
Accuracy

Resolution

SENSOR
2

...

Frequency

Range

FOV

Perception
technology

Noise /
Accuracy

Resolution

SENSOR
n

Possible to
improve using

"Hit
Layer"

Processor power
required

for data filtering

Uf

n sensors selected

Overall cost of
sensors

Cs

Hardware
required

for data transfer

Ct

Possible
to improve

using Filtering

Resultant
resolution (least
accurate sensor)

R ≤ Rmin

Resultant noise
(most noisy sensor)

N ≤ Nmin

OPTIMIZING
METRIC

Cost of the system
C

Iterative
Metrics

Relaxation

n
sensors

Sensors'
placement
adjustment

Processor power
required

for sensors
processing

Up

Cost of CPU
Cc

Fig. 1. Overview of the selection process
in the form of Multi-Objective Optimization
with Metrics Relaxation
Rys. 1. Schemat procesu selekcji w postaci
optymalizacji wielokryterialnej z  relaksacją
metryk

7

Konrad Cop, Morteza Haghbeigi, Marcin Gajewski, Tomasz Trzciński

It is important that Satisficing metrics are not modified
directly. Instead, Application Requirements and Sensor Fea-
tures should be adjusted (relaxed) to alter Satisficing metrics.

Spatial Coverage SC For the purpose of this paper, we intro-
duce a new metric that encapsulates the notion of how well
the space around the robot is covered. Where and how the
sensors are mounted on the robot results in a complex shape
of the combined FOV, as shown in the example from Fig. 2a).
To qualitatively express the coverage, we propose to compute
intersections of the combined Field of View at various angles
around the vertical axis of the robot and calculate areas cov-
ered by sensors in each intersection from ground to the robot’s
height h. As the robot has a non-zero diameter, we propose
to take into account only the area from the robot’s exterior
r to the given range d. Examples of such intersections for
r  = 450 mm and d = 3500 mm can be seen in Fig. 2b, c). As
it is visible, depending on the angle, different ratio of space
is covered by the combination of the sensors. We propose to
combine the coverage ratios into the Spatial Coverage met-
ric expressed as two graphs of coverage plotted against rota-
tion angle, as depicted in Fig. 2 d, e). The first one shows the
complete coverages h × [r, d]. We also introduce the second
metric which corresponds to floor coverage within the range
[r, d]. To justify the purpose of the second metric, one must
remember that most obstacles “stand on the ground” there-
fore even if an object is not completely visible, noticing just
the bottom part might be sufficient for efficient navigation. As
this is very application-specific, it is a designer who needs to
decide to which part of the complete space (as defined by the
first graph) the system can be limited. If there are hanging or
“sticking-out-of-wall” objects in the environment, they may
impose danger to the robot as depicted in Fig. 7. This however
can also be mitigated software-wise as described in section 4.

2.4. Optimizing metric and iterative relaxation
The final optimization parameter of the process is the purchase
cost of the complete system. It consists of multiple elements
mentioned in the following section:

Overall cost of sensors This cost component is expressed as
the sum of prices Psi of all sensors:

	 1 2 .s s s snC P P P= + + + 	 (1)

Overall cost of data transfer hardware This cost compo-
nent incorporates the purchase price of devices like routers,
cables, and network cards. To select appropriate components
the amount of data per second generated by each sensor must
be computed. More specifically, each sensor occupies a spe-
cific bandwidth Bi, which is a product of the weight of single
data shot wi and i-th sensor’s frequency fi, expressed in Bps
(bits per second):

	 .i i iB fω= ⋅ 	 (2)

Where wi results from the Field of View of the sensor, reso-
lution, precision of data representation etc., and is a character-
istic of each device usually expressed in bytes. The bandwidth
occupied by all sensors is the sum of each sensor’s bandwidth:

	 1 2 .nB B B B= + + + 	 (3)

Each component in the transfer system (cables switches,
routers etc.) should be selected to have a bandwidth capacity
higher than all sensors’ bandwidth Btj > B. The cost of transfer
components is the sum of prices Ptj of all m devices and com-
ponents in the system that fulfill the aforementioned criterion:

	 1 1 2 2() () ().t t t t t tm tmC P B P B P B= + + + 	 (4)

Cost of CPU This cost component describes the cost of a pro-
cessing unit used for performing operations on the data arriv-
ing from sensors. To define processing power requirements of
such a CPU, two factors need to be taken into accout:
−	 Processing power for sensor operation. Each sensor

is operated by means of a software driver which performs
data reception, conversion into the appropriate format, and
communication with higher-level software. The exact pro-
cessing power requirement for i-th sensor Upi is difficult to
analytically compute and requires experimental measure-
ment for each sensor.

−	 Processing power for data filtering. If a sensor needs
specific preprocessing e.g. filtering, additional CPU power
is needed Ufi. Further analysis of this topic is described in
Section 3.
The CPU should be selected in a way that fulfills the fol-

lowing condition:

	

1 2

1 2

.

p p p pn

f f f fn

CPU p f

U U U U

U U U U

U U U

= + + +

= + + +

> +



 	 (5)

And the cost of the CPU is the purchase price of a device:

	 ().c CPUC P U= 	 (6)

Finally, the overall cost of the system is expressed simply as
the sum of all costs mentioned above:

	 .s t cC C C C= + + 	 (7)

If the resultant cost exceeds the intended budget, one
should return to the initial step and relax the Application
Requirements and desired Sensor Features. At this step, if it
is mechanically possible, one might consider modifying the
mounting position of the sensors. When wisely considered,
this can even reduce the number of sensors. Finally, the pro-
cess of relaxation should be repeated until a satisfactory cost
is achieved.

2.5. Applicability
UR Cleaner use case The described process was used for the
selection of sensors for the autonomous cleaning robot The
resultant sensor rig consists of five depth sensors. Kinect Azure
[26] as the front sensor, three PMD pico flexx [27] for side and
back and the Velodyne VLP-16 Puck [28] for the top. The
Satisficing metrics for which the acceptable cost level (which
cannot be disclosed due to business sensitivity) was reached are
described in Table 1. The SC metric for this robot is depicted
in Fig. 2 d, e).

Tab. 1. Satisficing metrics for industrial use case
Tab. 1. Metryki satysfakcjonujące w przypadku przemysłowego robota
sprzątającego

F [Hz] R [mm] N [mm] L [binary]

15 122 30 True

Potential of generalization The proposed approach for the
selection of sensors was designed to generalize for various
robot types. Specifically one can consider a situation when
the robot does not move on a flat surface but instead moves
on uneven terrain, in the air, or under water. In such scenar-
ios, the robot’s orientation varies in a 3D space. Importantly,
all Application Requirements remain valid but require careful

8

Perception Systems for Autonomous Mobile Robots: Selecting and Mitigating Limits

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 1 /2025

a)

b)	 c)

d)							 e)					 e)

Fig. 2. Explanation of the SC metric. a) 3D view of sensors’ FOV;
b, c) examples of cross-sections at specific angles; d, e) plots
of metric evaluation for complete coverage and floor coverage.
The angles of cross-section are evaluated from 0° to 180° as the
sensors are symmetrically positioned on both sides of the robot
Rys. 2. Opis metryki SC. a) widok 3D przedstawiający pole widzenia
czujników; b, c) przykładowe przekroje w wybranych kątach; d, e) wykresy
oceny metryki dla całkowitego pokrycia oraz pokrycia powierzchni podłogi.
Kąty przekrojów analizowane są od 0° do 180°, ponieważ czujniki są
symetrycznie rozmieszczone po obu stronach robota

analysis and potentially experimental verification. E.g. the
same sensor working in an outdoor environment might expe-
rience different noise characteristics than in the indoor case.
Similarly, the dynamics of the objects in the environment and
the size of obstacles heavily depend on the application use
case. Nevertheless, most of the Satisficing Metrics, namely F,
R, N, L remain fully valid regardless of the working condi-
tions of the robot whether it is an outdoor, indoor, structured
environment, air or underwater robot. The remaining metric
i.e. SC is defined within the space limited by the flat ground
in the bottom and specific height at the top. Such a definition
is especially useful for robots operating in structured environ-
ments and does not apply to robots whose orientation varies
in 3D space. It can however be easily generalized by not reduc-
ing the lower and upper limits but using the complete sphere
around the robot instead.

3. Data preprocessing

When the sensors are selected one has to consider whether
using raw data outputs for multi-sensor systems is feasible.
Sensors produce high-frequency data that can strain the robo-
t’s computational resources. Filtering serves to reduce the data

volume, thereby facilitating more efficient real-time proces-
sing. Furthermore, it diminishes noise and filters out irrelevant
information, enhancing the accuracy of environment mapping,
object detection, and navigation. This specifically allows to
use cost-effective sensors while ensuring data quality thro-
ugh effective filtering techniques. Additionally, filtering ensu-
res that data processing is consistent with sensor data rates,
preventing delays and enabling timely responses to dynamic
environmental conditions.

Multiple filtration methods have been developed so far and
can be used together but the overall performance is highly
dependent on the combination of parameters and sequence of
processing. This section introduces some wellknown filtration
methods and evaluates the influence of the order of execution
on computational efficiency. A comparative evaluation is pre-
sented based on experimental results.

3.1. Preprocessing methods
Out of multiple algorithms which have been developed so far,
we selected four well-established methods that, in our asses-
sment, are sufficient to construct effective filtering pipelines:
−	 Statistical Outlier Removal — a method that removes noise

by analysing the distribution of distances between neigh-
bouring points. Points with distances significantly deviat-

9

Konrad Cop, Morteza Haghbeigi, Marcin Gajewski, Tomasz Trzciński

ing from the mean are classified as outliers and excluded,
resulting in a cleaner and more reliable point cloud [7, 19].
The filter is parameterized by the number of neighbouring
points N and the standard deviation multiplier M, which
defines the threshold as a multiple of the standard deviation
from the mean distance. Points falling outside this range are
classified as outliers and subsequently removed.

−	 Voxel Grid Filtering — A method for downsampling point
clouds by approximating points within a cubic region
(voxel) with their centroid [7, 19]. The process is parame-
terized by a voxel grid size V.

−	 Pass-Through Filters — a method that selects points within
a specified range along a given axis (e.g., x, y, or z). Points
outside this defined interval are excluded, allowing for tar-
geted segmentation of a region of interest [19]. Parametrized
by coordinates of interval <A, B> along given axis.

−	 RANSAC (Random Sample Consensus) algorithm for plane
segmentation — an algorithm used to identify and segment
planes in point clouds by fitting models to random subsets
of points and selecting the model with the highest number
of inliers [19, 20]. Parametrized by max iterations I that
specifies the maximum number of iterations to run, deter-
mining how many random samples are tested and distance
threshold T that defines the maximum allowable distance
from a point to the plane for it to be considered an inlier.
Despite their simplicity, these techniques can be com-

bined to create efficient filtration pipelines that address the
constraints of time and resources. We will present example
pipelines that integrate these filters to achieve both resource
efficiency and effective operation.

3.2. Proposed filtration pipelines
In this study, we propose four distinct data filtration pipelines
for point cloud processing, which essentially consist of various
combinations of the four basic filtration algorithms described
before. We aimed to develop a filtration pipeline that allows
getting rid of information that is irrelevant for the navigation
and would cause unnecessary load when other algorithms of
a robot, such as navigation, utilise the data. This can be achie-
ved not only by reducing the noise level and downsampling
the point clouds but also by making additional assumptions.
More specifically, in our case, the sensors are firmly located in
the robot’s reference frame and the robot is always traveling
on the ground, therefore the surface of contact (floor) can be
removed. This further reduces the weight of the point cloud.
With this in mind, we propose four pipelines consisting of noise

Fig. 3. Proposed filtration pipelines
Rys. 3. Proponowane sposoby filtracji

Fig. 4. Top: Example initial point cloud, Bottom: Corresponding result
point cloud for Pipeline 4
Rys. 4. Góra: Przykładowa wejściowa chmura punktów; Dół: ta sama
chmura odfiltrowana zgodnie z procesem Pipeline 4

removal, size reduction, and floor removal in various combina-
tions as depicted in Fig. 3.

For the first three pipelines, a two-step process for floor remo-
val, referred to as “Floor Removal 1”, is implemented in the
following manner:
1.	The region of interest, where the floor plane is assumed

to be located, is identified using a pass-through filter. The
point cloud is divided parallel to the estimated floor plane,
creating a slice within which the plane is searched.

2.	The floor plane is then segmented using the RANSAC algo-
rithm and corresponding points are removed.

In the fourth pipeline, the floor removal process, referred
to as “Floor removal 2”, is enhanced by introducing an addi-
tional voxelization step, applied to a copy of the original point
cloud before running the RANSAC algorithm. By using a voxel
filter with larger voxel dimensions, the floor plane equation
can be determined more efficiently, allowing points to be seg-
mented based on their distance from the plane (same value as
RANSAC threshold).

3.3. Empirical Experiment Results
Experiments on proposed pipelines were conducted using 100
example point clouds gathered from an interior of UR offices
employing Microsoft Azure Kinect ToF camera. They consist of
vast open spaces (typical for industrial cleaning robots), as well
as office objects like tables, chairs, etc. An example point cloud
that consists of 144 545 points, is presented in Fig. 4, top. We
assume that the point cloud is already in the robot’s naviga-
tional coordination frame that is placed on the floor plane.

10

Perception Systems for Autonomous Mobile Robots: Selecting and Mitigating Limits

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 1 /2025

Tab. 2. Filters parameters for analyzed pipelines. V1 is voxel grid size
for “Voxel Grid Filtering 1” and V2 for “Voxel Grid Filtering 2”
Tab. 2. Wartości parametrów filtrów dla analizowanych sposobów filtracji;
V1 – wielkość siatki woksela dla „Voxel Grid Filtering 1”, V2 – dla „Voxel Grid
Filtering 2”

N M A [cm] B [cm] T [cm] I V1 [cm] V2 [cm]

10 1 -10 10 3 100 3 30

Fig. 5. Comparison of the four filtering pipelines by their average
processing time total and in each stage
Rys. 5. Porównanie czterech proponowanych sposobów filtracji pod
względem całkowitego średniego czasu przetwarzania oraz czasu
przetwarzania na każdym z etapów

Fig. 6. Comparison of the four filtering pipelines by their average
number of points in resultant point clouds and average number of
points in corresponding initial point clouds
Rys. 6. Porównanie czterech proponowanych sposobów filtracji pod
względem średniej liczby punktów w uzyskanych chmurach punktów oraz
średniej liczby punktów w odpowiadających im początkowych chmurach
punktów

timeefficient option) demonstrates the successful elimination of
the floor plane and a reduction in the number of small outliers,
thereby providing accurate yet efficient environmental recon-
struction. The differences in memory consumption across the
pipelines are negligible, amounting to around 200 MB of RAM
memory on average for each pipeline. This indicates that the
proposed methods can be effectively applied in mobile robotics,
enhancing autonomous navigation capabilities.

Fig. 7. Examples illustrating navigation challenges caused by
partial sensor coverage. (a) The obstacle protruding from the wall is
detectable in pose p1 relative to the robot, but after the robot’s linear
displacement, it becomes undetectable in the new relative pose p2.
(b) An obstacle below the Lidar’s detection range is identified by the
front sensor, but after the robot’s rotation, it is no longer detectable
Rys. 7. Przykłady ilustrujące wyzwania nawigacyjne spowodowane
częściowym pokryciem przestrzeni przez czujniki. (a) Przeszkoda
wystająca ze ściany jest wykrywalna w położeniu p1 względem robota, ale
po liniowym przemieszczeniu robota staje się niewykrywalna w nowym
położeniu p2. (b) Przeszkoda znajdująca się poniżej zasięgu detekcji
LIDARa jest identyfikowana przez czujnik przedni, jednak po obrocie robota
przestaje być wykrywana

Thanks to that, the time required for transformation is igno-
red and the operation of floor plane removal is more intuitive.

To get a comparable result, the same filters used in different
pipelines have the same parameters, as presented in Tab. 2. To
select filtration parameters, prior to the experiments, an exten-
sive review of scientific literature on point cloud filtering tech-
niques was conducted. The review identified only a single study
that implemented precise versions of both statistical outlier fil-
tering and voxel grid filtering, along with a thorough parameter
analysis [6]. To the best of our knowledge, no existing studies
offer a comprehensive evaluation of filter parameters. Due to
that, the parameter values for this research were established
based on the authors’ industrial experience, ensuring an opti-
mal balance between detailed scene reconstruction and pro-
cessing efficiency, while preserving crucial data necessary for
navigation. The initial voxel grid filtering was configured with
a grid size large enough to reduce the number of points, yet
small enough to maintain an appropriate resolution for accurate
object representation. Parameters for statistical outlier removal
were selected to eliminate outliers without omitting small
objects. The parameters for floor removal (using RANSAC
and Pass-through filters) were optimized to ensure computa-
tional efficiency while retaining small floor-level objects. For
the secondary voxel grid filtering, a larger grid size was chosen
to accelerate processing without compromising critical data.
Pipelines were compared in terms of processing time (total and
per stage) as depicted in Fig. 5, and the number of points in
the resultant point cloud, shown in Fig. 6.

An examination of Fig. 5 reveals that reducing data comple-
xity through basic voxel grid filtering significantly decreases pro-
cessing time. With each subsequent optimization, the processing
time can be further reduced to below 0.05 seconds, correspon-
ding to a frequency exceeding 20 Hz, which is higher than the
operating frequency of any sensor listed in Table 1 for before
mentioned UR case. Furthermore, as illustrated in Fig. 4, the
example output point cloud produced by Pipeline 4 (the most

11

Konrad Cop, Morteza Haghbeigi, Marcin Gajewski, Tomasz Trzciński

4. Mitigation of limited field of view

Once the detailed analysis is conducted and the optimal arran-
gement of sensors is not achievable due to the system costs,
one can resort to the algorithmic solution to eliminate the
threats caused by the blind spots of the sensory rig during the
navigation. More specifically, with the limited FOV of sensors,
achieving full coverage of the surroundings at all times is not
possible. An obstacle may be detected in one position, but as
the robot moves, the same obstacle could fall into the sensors’
blind spot (Fig. 7). This makes navigation challenging, espe-
cially when moving close to the walls and obstacles. To address
this issue, we propose an approach that utilises spatio-temporal
sensor’s information.

The core concept of our proposal is to update the naviga-
tion map by integrating both current sensor data and previous
detections, along with the robot’s movements. This approach is
implemented within the framework of the costmap [21], a crucial
component of the navigation stack in the Robot Operating Sys-
tem (ROS) [22]. Nevertheless, it is adaptable and can be applied
to other navigation systems as well. In the following section,
we provide a brief overview of the navigation costmaps. This
is followed by an explanation of the proposed approach, called
Hit Map, and the presentation of empirical experiment results.

4.1. Costmap-Based Navigation
Navigation systems require a well-defined configuration space.
Costmaps provide an efficient way to represent the robot’s
operational environment, facilitating safe and optimal path
planning. As illustrated in Fig. 8, the Costmap module receives

4.2. Hit Map
In this section, we propose a new Costmap layer, referred to as
the Hit Layer. The occupancy grid associated with this layer,
termed the Hit Map, contains cell values (hit) that are pro-
portional to the duration of time each cell has been detected
either as an obstacle or free.

Figure 9 depicts the structure of the Costmap module, incor-
porating the Hit Layer. The Costmap module is responsible for
updating the master grid, a fundamental element for all autono-
mous planning functions, at a predefined frequency. Throughout
this process, each layer refreshes its respective occupancy grid,
which in turn contributes to the update of the master grid.
Although the Costmap module may consist of several layers,
the Obstacle Layer plays a critical role in the creation and con-
tinuous updating of the Hit Layer.

Obstacle Layer Update The Perception module receives data
from sensors and applies preprocessing operations (e.g. the
actions described in Section 3). Processed data is then pub-
lished into specific channels. The Obstacle layer maintains an
Observation Buffer for each specified data channel. During
the update process, it modifies the obstacle grid based on the
most recent data in the Observation Buffers. Each cell in the
obstacle grid will have one of two values, indicating whether
it is free or occupied. Then, the master grid is modified based
on the updated obstacle grid.

Fig. 8. Main components of the navigation system
Rys. 8. Główne komponenty systemu nawigacji

the map and the robot’s pose from the SLAM (Simultaneous
Localization and Mapping), along with processed sensor data
from the Perception system [23]. It processes this information
into a 2-D grid of cells, known as an occupancy grid, which
serves as the primary input for the planning system. Each cell
in the occupancy grid has a value representing the cost of tra-
versing through that grid cell [24].

To enhance flexibility and accommodate various navigational
constraints, a layered approach is proposed that separates the pro-
cessing of costmap data into semantically distinct layers [21, 25].
In this approach, each layer handles data from a specific source
using designated functionalities. The Costmap features a pri-
mary occupancy grid, known as the master grid, while each layer
maintains its own layer grid. Three basic layers are commonly
used in navigation systems:
−	 Static Layer: Represents data from the Mapping compo-

nent, providing a representation of the environment.
−	 Obstacle Layer: Aggregates data from sensors to represent

obstacles as a unified obstacle grid. Each grid cell is either
free or occupied.

−	 Inflation Layer: Accounts for the robot’s dimensions, specifi-
cally its footprint, by inflating the obstacles in the final grid.

The obstacle grid is the main input for the proposed Hit Layer.

Fig. 9. Update process overview of the costmap module which
includes the proposed Hit Layer: Sensor data is processed and
published into designated channels, where observation buffers
temporarily store it. During each update cycle, the Obstacle Layer
refreshes the Obstacle Grid using the data from the observation
buffers and updates the Master Grid. The Hit Layer then revises the
Hit Map based on the current Obstacle Grid and finalizes the Master
Grid update
Rys. 9. Przegląd procesu aktualizacji mapy kosztów, który obejmuje
proponowaną warstwę Hit Layer: Dane z czujników są przetwarzane
i publikowane w wyznaczonych kanałach, gdzie tymczasowo
przechowywane są w buforach obserwacji. Podczas każdego cyklu
aktualizacji, warstwa przeszkód odświeża siatkę przeszkód, korzystając
z danych z buforów obserwacji, i aktualizuje mapę główną. Następnie
warstwa Hit Layer dokonuje rewizji mapy trafień na podstawie aktualnej
mapy przeszkód i finalizuje aktualizację mapy głównej

12

Perception Systems for Autonomous Mobile Robots: Selecting and Mitigating Limits

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 1 /2025

Hit Layer Update Each Hit Map cell is an integer within the
range [0, hitmax]. Initially, all cell values are set to zero. The
Hit Layer updates the Hit Map based on the latest obstacle
grid received from the Obstacle Layer, as well as the robot’s
movements in three main steps. Figure 10 illustrates the Hit
Map update process using a simplified example.

First, the Hit Map is relocated using a Sliding Window appro-
ach, which accounts for the robot’s displacement. Subsequently,
the portion of the Hit Map corresponding to newly covered areas

Fig. 10. An illustrative example of the Hit Map update process. In
this example, the Hit Map is updated when the robot moves to a new
cell, though in practice, costmaps typically have a higher update
frequency. On the left, the positions of the obstacle and costmap
are shown, while the Hit Map is displayed on the right. Cells where
an obstacle is detected and the hit value is increased are shown as
incremented cells. Additionally, cells that are free in the obstacle grid
but have a hit value greater than zero (still considered occupied in the
final master grid) are displayed as decremented cells
Rys. 10. Przykład ilustrujący proces aktualizacji mapy trafień. W tym
przykładzie mapa trafień jest aktualizowana, gdy robot przemieszcza się
do nowej komórki, chociaż w praktyce mapy kosztów zazwyczaj mają
wyższą częstotliwość aktualizacji. Po lewej stronie przedstawiono pozycje
przeszkody i mapa kosztów, natomiast po prawej stronie widoczna jest
mapa trafień. Komórki, w których wykryto przeszkodę i wartość trafienia
została zwiększona, są oznaczone jako komórki inkrementowane.
Dodatkowo komórki, które są wolne w mapie przeszkód, ale mają wartość
trafienia większą niż zero (wciąż uznawane za zajęte w finalnej mapie
głównej), są wyświetlane jako komórki dekrementowane

is reset to 0, while the cells that remain in the common area
before and after the update are left unchanged.

In the next stage, the Hit Map is updated. During this pro-
cess, the value of each cell in the Hit Map is recalculated accor-
ding to the corresponding cell in the obstacle grid, as shown in
equation 8. Let hi represent the i-th cell in the Hit Map, and oi
represent the i-th cell in the obstacle grid. If oi is occupied, hi is
increased according to the hit and hitmax parameters. Conversely,
if oi is free, hi is decreased by one.

	

maxmin(,) if is occupied,

max(0, 1) otherwise

i i

i

i

h hit hit h
h

h

 +
= 
 −

	 (8)

Finally, the master grid is updated based on the Hit Map.
Let mi denote the i-th cell in the master grid, and let coccupied
represent the cost value of an occupied cell. The value of mi is
then updated according to equation 9:

	

if > 0,

otherwise

occupied i

i

i

c h
m

m


= 


	 (9)

By adding the Hit Layer to the set of layers in the costmap,
obstacles that have been detected for a longer duration are
more likely to be retained in the Hit Map, even if they are
no longer detected. The parameters hit and hitmax control the
cautiousness of the Hit Layer. Higher values for these param-
eters result in safer navigation, as obstacles are more likely to
be retained. However, this can also lead to more cells being
marked as occupied in the costmap. Choosing appropriate val-
ues depends on the specific environment in which the robot is
operating and the coverage provided by the sensors.

4.3. Motion Condition
The Hit Map update process involves two main operations:
incrementing and decrementing. By decrementing, occu-
pied cells that are no longer detected by the Obstacle Layer
will eventually be freed. This helps to prevent costmap from
becoming cluttered. However, this approach also introduces
a potential issue. If the robot remains stationary for an exten-
ded period, the Hit Map continues to decrement and free the
cells. If some of these cells correspond to obstacles that have
moved into a blind spot, they might not be considered when
the robot starts moving again.

Fig. 11. Experiment setup for navigation test with and without
the Hit Layer
Rys. 11. Stanowisko eksperymentalne do testów systemu nawigacji
z warstwą Hit Layer oraz bez niej

13

Konrad Cop, Morteza Haghbeigi, Marcin Gajewski, Tomasz Trzciński

To address this issue, the motion condition is evaluated
during the decrement step using two data sources: (1) veloc-
ity commands from the controller and (2) the robot’s dis-
placement over a predefined time interval. Specifically, if
the robot’s displacement within the specified time period,
denoted as dduration, falls below a defined threshold dthreshold,
the robot is considered stationary, and the decrement oper-
ation is skipped.

4.4. Empirical Experiment Results
A test scenario was designed to evaluate the efficiency of
the proposed Hit Layer. This scenario involves a wallfollo-
wing operation, where the navigation system must guide
the robot to maintain a close distance to the wall. This is
particularly challenging in industrial environments, where
various objects of differing heights may be present near the
walls and could fall into the sensors’ blind spots. Due to
the proximity to the wall, such scenarios increase the risk
of collisions. Specifically risky are the situations where the
objects do not stretch vertically from the ground but “stick
out of the wall”.

Figure 11 illustrates the test setup, which includes a table
with a foam layer on top. The foam extends beyond the
edges of the table and is only detectable by the robot’s front
depth camera. We conducted tests both with and without
the Hit Layer. Table 3 summarizes the parameters chosen
for the test scenario.

Figure 12 (a) shows the costmap shortly after the wall-
following behaviour begins, but before the robot reaches the
table. At this stage, the front sensor detects the foam. As the
robot approaches the foam, it starts navigating around it.
Figure 12 (b) and (c) represent the costmap in this pose, with
and without the Hit Layer, respectively. When using the Hit
Layer, the foam that was previously detected by the camera
remains in the costmap for an extended period, allowing the
robot to navigate around it successfully. In contrast, without
the Hit Layer, the foam disappears from the costmap, caus-
ing the robot to move to close to the table and hit the foam.

5. Conclusions

In this paper, we have presented three strategies that allow
to engineer an end-to-end perception system of a robot. The
presented selection process can be used to any autonomous
robot in a generic way. We also evaluated the applicability of
various filtration pipelines and experimentally evaluated their
performance. Finally, we introduced a method to mitigate
limited sensors FOV thus allowing to fill perception system
gaps and potentially limit the number of sensors. All strate-
gies were successfully applied in the autonomous floor scrubber
UR\Cleaner and can be reused in other autonomous robots.

Acknowledgments
Project co-financed by the European Union through the Euro-
pean Regional Development Fund under Action 1.1 of the
Smart Growth Operational Programme 2014-2020. The pro-
ject is implemented within the competition organized by the
National Centre for Research and Development: Call num-
ber: 1/1.1.1/2017 – Industrial research and development work
conducted by enterprises. Project Number POIR.01.01.01-00-
0206/17: „Designing a prototype of an autonomous platform
moving in a production environment”.

Fig. 12. Costmaps from the navigation test during wall-
following, with and without the Hit Layer. The graphics
are generated using rviz tool. (a) Before the robot reaches
the table, which is within the observation range of the
front camera. A few seconds later, the robot attempts to
navigate around the table and the foam placed on it. Due to
the robot’s rotation, the foam falls into the camera’s blind
spot. (b) Without further detection, the robot moves too
close to the table and collides with the foam. (c) Using prior
detections, the Hit Layer preserves the foam as an obstacle
in the costmap, allowing the robot to successfully navigate
around the table
Rys. 12. Mapy kosztów z testu nawigacji w trybie śledzenia
ścian, z warstwą Hit Layer oraz bez niej. Grafiki zostały
wygenerowane za pomocą narzędzia rviz. (a) Przed dotarciem
robota do stołu znajdującego się w zasięgu kamery przedniej.
Kilka sekund później robot podejmuje próbę ominięcia stołu
oraz pianki umieszczonej na jego powierzchni. Ze względu na
obrót robota, pianka znika z pola widzenia kamery. (b) W wyniku
braku dalszej detekcji robot przemieszcza się zbyt blisko stołu
i uderza w piankę. (c) Dzięki wcześniejszym detekcjom warstwa
Hit Layer zachowuje piankę jako przeszkodę na mapie kosztów,
umożliwiając robotowi skuteczne ominięcie stołu

Tab. 3. Hit layer parameters selected for the wall-following navigation
test
Tab. 3. Parametry warstwy Hit Layer wybrane do testów nawigacji w trybie
śledzenia ściany

hit hitmax dthresh [mm] dduration [s]

3 1500 0.1 10

14

Perception Systems for Autonomous Mobile Robots: Selecting and Mitigating Limits

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 1 /2025

References

1.	 Shi Q., Li C., Wang C., Luo H., Huang Q., Fukuda T.,
Design and implementation of an omnidirectional vision
system for robot perception, “Mechatronics”, Vol. 41, 2017,
58–66, DOI: 10.1016/j.mechatronics.2016.11.005.

2.	 Deshpande P., Reddy V.R., Saha A., Vaiapury K., Dewan-
gan K., Dasgupta R., A next generation mobile robot with
multi-mode sense of 3D perception, [In:] 2015 International
Conference on Advanced Robotics (ICAR). IEEE. 2015,
382–387, DOI: 10.1109/ICAR.2015.7251484.

3.	 Lambert J., Carballo A., Cano A.M., Narksri P., Wong D.,
Takeuchi E., Performance analysis of 10 models of 3D
LiDARs for automated driving. “IEEE Access”, Vol. 8, 2020,
131699–131722, DOI: 10.1109/ACCESS.2020.3009680.

4.	 Stoyanov T., Louloudi A., Andreasson H., Lilienthal A.J.,
Comparative evaluation of range sensor accuracy in indoor
environments, [In:] 5th European Conference on Mobile
Robots, ECMR 2011, Orebro, Sweden, 2011, 19–24.

5.	 Diaz M.G., Tombari F., Rodriguez-Gonzalvez P., Gonzalez-
-Aguilera D., Analysis and evaluation between the first and
the second generation of RGBD sensors, “IEEE Sensors
journal”, Vol. 15, No. 11, 2015, 6507–6516,
DOI: 10.1109/JSEN.2015.2459139.

6.	 Jin Y., Yuan X., Wang Z., Zhai B., Filtering Processing
of LIDAR Point Cloud Data, [In:] IOP Conference Series:
Earth and Environmental Science, Vol. 783, May 2021,
DOI: 10.1088/1755-1315/783/1/012125.

7.	 Han X.-F., Jin J.S., Wang M.-J., Jiang W., Gao L., Xiao L.,
A review of algorithms for filtering the 3D point cloud,
“Signal Processing: Image Communication”, Vol. 57, 2017,
103–112, DOI: 10.1016/j.image.2017.05.009.

8.	 Moreno C., A Comparative Study of Filtering Methods for
Point Clouds in Real-Time Video Streaming,
[https://api.semanticscholar.org/CorpusID:162172879].

9.	 Roelofsen S., Gillet D., Martinoli A., Collision avoidance
with limited field of view sensing: A velocity obstacle appro-
ach. [In:] 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, 1922–1927.
DOI: 10.1109/ICRA.2017.7989223.

10.	Bouraine S., Fraichard T., Salhi H., Provably safe naviga-
tion for mobile robots with limited field-of-views in unk-
nown dynamic environments, [In:] 2012 IEEE International
Conference on Robotics and Automation, 2012, 174–179,
DOI: 10.1109/ICRA.2012.6224932.

11.	Phan D., Yang J., Grosu R., Smolka S.A., Stoller S.D.,
Collision avoidance for mobile robots with limited sensing
and limited information about moving obstacles. “Formal
Methods in System Design”, Vol. 51, 2017, 62–86,
DOI: 10.1007/s10703-016-0265-4.

12.	He B., Wu S., Wang D., Zhang Z., Dong Q., Fast-dynamic-
-vision: Detection and tracking dynamic objects with event
and depth sensing, [In:] 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), IEEE,
2021, 3071–3078, DOI: 10.1109/IROS51168.2021.9636448.

13.	Cop K.P., Peters A., Žagar B.L., Hettegger D., Knoll A.C.,
New metrics for industrial depth sensors evaluation for pre-
cise robotic applications, [In:] 2021 IEEE/RSJ Internatio-
nal Conference on Intelligent Robots and Systems (IROS),
IEEE, 2021, 5350–5356,
DOI: 10.1109/IROS51168.2021.9636322. Peter

14.	Hausamann P., Sinnott C.B., Daumer M., MacNeilage P.R.,
Evaluation of the Intel RealSense T265 for tracking natural
human head motion, “Scientific Reports”, Vol. 11, 2021,
DOI: 10.1038/s41598-021-91861-5.

15.	Tadic T. at al. Perspectives of RealSense and ZED depth
sensors for robotic vision applications, “Machines”, Vol. 10,
No. 3, 2022, DOI: 10.3390/machines10030183.

16.	Pinto A.M. et al. Evaluation of depth sensors for robo-
tic applications, [In:] 2015 IEEE International Conference
on Autonomous Robot Systems and Competitions, IEEE,
2015, 139–143, DOI: 10.1109/ICARSC.2015.24.

17.	Haenel R., Semler Q., Semin E., Grussenmeyer P., Tabbone S.,
Evaluation of low-cost depth sensors for outdoor applica-
tions, “The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences”, Vol.  48,
2022, 101–108,
DOI: 10.5194/isprs-archives-XLVIII-2-W1-2022-101-2022.

18.	Siegwart R., Nourbakhsh I.R., Scaramuzza D., Introduction
to autonomous mobile robots. MIT press, 2011.

19.	Rusu R.B., Cousins S., 3D is here: Point Cloud Library
(PCL), [In:] 2011 IEEE International Conference on Robo-
tics and Automation, 2011,
DOI: 10.1109/ICRA.2011.5980567.

20.	Fischler M.A., Robert C., Bolles A., Random Sample Con-
sensus: a Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography, “Communica-
tions of the ACM”, Vol. 24, No. 6, 1981, 381–395,
DOI: 10.1145/358669.358692.

21.	Lu D.V., Hershberger D., Smart W.D., Layered costmaps
for context-sensitive navigation, [In:] 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
2014, 709–715, DOI: 10.1109/IROS.2014.6942636.

22.	Quigley M., Conley K., Gerkey B., Faust J., Foote T., Leibs J.,
Wheeler R., Ng A.Y., ROS: an open-source Robot Ope-
rating System, ICRA workshop on open source software,
2009, Vol. 3, No. 3.2.

23.	Raja P., Pugazhenthi S., Optimal path planning of mobile
robots: A review, “International Journal of the Physical
Sciences”, Vol. 7, No. 9, 2012, 1314–1320,
DOI: 10.5897/IJPS11.1745.

24.	Carlos Andre Seara da Silva. Robot Navigation in Highly-
-Dynamic Environments. PhD thesis. University of Coim-
bra, 2022.

25.	Lu D.V., Smart W.D., Towards more efficient navigation
for robots and humans, [In:] 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2013,
1707–1713, DOI: 10.1109/IROS.2013.6696579.

Other sources

26.	Microsoft. Azure Kinect DK hardware specifications,
[https://learn.microsoft.com/sk-sk/previous-versions/
azure/kinect-dk/hardware-specification].

27.	Infineon. Development Kit Brief CamBoard pico flexx,
[https://media.automation24.com/datasheet/en/PMD_
DevKit_Brief_CB_pico_flexx_CE_V0218.pdf].

28.	Velodyne. VLP-16 | Ouster,
[https://ouster.com/products/hardware/vlp-16].

15

Konrad Cop, Morteza Haghbeigi, Marcin Gajewski, Tomasz Trzciński

Streszczenie: Dobrze zaprojektowany system percepcji jest kluczowy dla prawidłowego działania
autonomicznego robota mobilnego, jednak jego stworzenie nie jest trywialnym zadaniem. Aby
stworzyć kompleksowy system, należy brać pod uwagę nie tylko cechy samych czujników, ale
także sposób, w jaki dane z nich są używane do działania robota. W artykule przedstawiono
zestaw ścisłe powiązanych strategii, które umożliwiają stworzenie kompleksowego systemu
percepcji, wykorzystującego reprezentację 3D w postaci chmur punktów. Nasza propozycja jest
na tyle uniwersalna, że może być stosowana w różnych robotach mobilnych, ponieważ uwzględnia
kontekst działania robota oraz ograniczenia sprzętowe. Pierwszą strategią jest wprowadzenie
sformalizowanego procesu wyboru czujników, ujętego jako problem optymalizacji wielokryterialnej
z relaksacją metryk, co pozwala na wybór optymalnego zestawu czujników w ramach ograniczeń
budżetowych. W drugiej strategii weryfikujemy różne metody filtrowania danych i ich kombinację
w kontekście systemu nawigacji, aby znaleźć kompromis między dokładnością a nakładem
obliczeniowym. Wreszcie, aby zniwelować suboptymalne pole widzenia połączonych czujników
i ulepszyć system percepcji, proponujemy nową koncepcję warstwy siatki zajętości, która
wykorzystuje informacje o ruchu w obliczeniach dostępności obszaru nawigacyjnego. W ramach
badań, przeprowadziliśmy eksperymentalną weryfikację tych strategii i zastosowaliśmy wyniki
w autonomicznym robocie sprzątającym.

Słowa kluczowe: percepcja robotyczna, roboty autonomiczne, sensory robotyczne, robotyka, nawigacja, filtracja danych

Systemy percepcji dla autonomicznych robotów mobilnych:
wybór i redukcja ograniczeń

Marcin Gajewski, MSc Eng.
marcin.gajewski@unitedrobots.co
ORCID: 0009-0005-2593-4808

He is a Team Leader of the Architecture and Stabi-
lity Team at United Robots. He received Bachelor
of Control Engineering and Robotics and Master
of Computer Science from Warsaw University
of Technology. Additionally received Master of
E-Business from Warsaw School of Economics.
His experience combines applied development
activities and project management. His research
interest include Autonomous Robotics, Robotics Perception and Robotics for
Space Exploration.

Konrad Cop, MSc Eng.
konrad.cop@unitedrobots.co
ORCID: 0000-0001-8159-9307

He is a Technology Lead United Robots and a
PhD student at Warsaw University of Technolo-
gy. He received Bachelor of Control Engineering
and Robotics from Wrocław University of Scien-
ce and Technology and Master of Robotics, Sys-
tems and Control from ETH Zurich. He was a rese-
archer in Autonomous Robots at CSIRO in Brisba-
ne, Australia and in robotic manipulation at TUM
in Munich, Germany. His experience combines a mixture of scientific research
and applied development activities. His research interests include Autonomo-
us Robotics, Application of Deep Learning to Robotics Perception and general
AI topics in Mobile Robots.

Morteza Haghbeigi, MSc Eng.
morteza.haghbeigi@unitedrobots.co
ORCID: 0000-0002-8554-508X

He is an Autonomous Navigation Engineer at Uni-
ted Robots and a Ph.D. student at Warsaw Uni-
versity of Technology. He holds a Master’s degree
in Mechanical Engineering from the Iran Universi-
ty of Science and Technology. His research focu-
ses on cooperative guidance methods, motion
and path planning for both single and multi-robot
systems, as well as optimization techniques using
co-evolutionary methods. He also has practical experience as a robotics develo-
per in industrial applications, where he has designed and implemented autono-
mous planning and navigation systems.

Prof. Tomasz Trzciński, DSc PhD Eng.
tomasz.trzcinski@pw.edu.pl
ORCID: 0000-0002-1486-8906

He is a Professor at Warsaw University of Techno-
logy, where he leads a Computer Vision Lab. He
was an Associate Professor at Jagiellonian Uni-
versity of Krakow in years 2020-2023, a Visiting
Scholar at Stanford University in 2017 and at Na-
nyang Technological University in 2019 and 2023.
He worked at Google (2013), Qualcomm (2012)
and Telefonica (2010). He is a Senior Member of
IEEE, member of ELLIS Society and director of ELLIS Unit Warsaw, member of
the ALICE Collaboration at CERN and an expert of National Science Centre and
Foundation for Polish Science. He is a Chief Scientist at Tooploox.

16

Perception Systems for Autonomous Mobile Robots: Selecting and Mitigating Limits

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A NR 1 /2025

