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1. Introduction

One of the key enablers of robotic autonomy is the robot’s 
ability to perceive its surroundings. Observation of the envi-
ronment is realised by means of a multitude of onboard sensors 
combined into a perception system. In the context of mobile 
robots, what the robot perceives is directly propagated to 
the navigation system. Sensors inputs are utilised to estimate 
achievable space in the environment to plan actions (trajecto-
ries) of the robot in short- and long-time perspectives. There-
fore, the ability to navigate efficiently highly depends on the 
sensors’ choice and how they are deployed. In this paper, we 
formulate three key aspects that allow the creation of a suc-
cessful end-to-end perception solution. Our proposal focuses 
solely on the 3D data in the format of point clouds which are 
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commonly used in robotic perception systems due to their 
effectiveness in representing complex environments.

The first aspect which must be considered is that the cho-
ice of the sensors that would satisfy multiple, often contradic-
ting requirements is not trivial. Depending on the mechanical 
design of the robot, characteristics of the robotic process, 
features of the environment, and budgetary limitations, various 
combinations of sensors can be selected. So far the selection 
process has usually been considered case-specific, for example, 
Shi et al. designed a perception system for a humanoid robot 
[1] while Deshpande et al. tackled a designated mobile platform 
[2] but no generic approach was proposed. Others proposed to 
compare sensors solely such as different LiDAR solutions [3] 
or RGBD cameras [4,  5] without deeply considering the appli-
cation. Instead of going this path, we propose to formulate 
the selection process as an iterative procedure that takes into 
account multiple “nice-to-have” requirements of the application 
and optimizes the costs of the solution. The process is formally 
defined and was used already for selecting a sensor rig for an 
autonomous cleaning robot.

Secondly, each sensor is a piece of hardware that has some 
production irregularities and detection inaccuracies, which lead 
to more or less noisy data. Using such data would cause the 
robot to experience unstable operation. Therefore, proper fil-
tration mechanisms are required to improve the behaviour of 
the robot. Additionally, depending on the sensor, the incoming 
data might be very dense or contain redundant information, 
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which potentially leads to unnecessary utilisation of compu-
tational resources when using such information for naviga-
tion. Multiple works were conducted in this regard to propose 
filtration strategies for purposes of object reconstruction [6, 
7] or 3D video streaming [8] and this is a well-explored field. 
However, in the context of mobile robots with limited onboard 
resources, it is not only important how well the filtration pro-
cedure performs but also how efficient it is. Therefore in this 
paper, we evaluate the influence of various filtration methods 
and their combination on the process efficiency.

Finally, as most robotic projects usually face budgetary limi-
tations, purchasing enough sensors to satisfy all requirements 
might not be feasible. As a result, some criteria must be sacri-
ficed. Based on practical experience, a common consequence 
of this limitation is the incomplete spatial coverage provided 
by the selected sensors, which fails to fully capture the robot’s 
entire surroundings. This, in turn, makes navigation particu-
larly challenging, as the reduced sensor coverage compromises 
the safety and reliability of the robot’s movement through 
its environment. With inadequate hardware, one could utilise 
the software to fill in the gap. Few approaches have been pro-
posed to address similar challenges, but they primarily focus 
on developing local planners or controllers that calculate col-
lision-free trajectories based on limited sensing capabilities, 
such as maximum sensor range [9, 10]. These methods often 
assume a 2D field of view, where obstacles within this plane 
are guaranteed to be detected. However, this assumption does 
not hold in 3D environments, where detecting blind spots is far 
more complex. For instance, Phan et al. introduced a decision-
-making module for robots with limited sensing capabilities, 
which enables collision avoidance based on partial detections 
in 2D [11]. Despite these advancements, none of these appro-
aches have fully explored the use of spatio-temporal informa-
tion for generating navigation occupancy maps, which could 
significantly enhance the reliability of autonomous navigation. 
We therefore, propose to utilise the information from both the 
sensor’s returns and the robot’s motion to accumulate the rele-
vant information by means of a Hit Layer.

The three aforementioned strategies are interrelated and 
essential when creating a perception system for a mobile robot 
in an end-to-end manner. The combined analysis constitutes 
the contribution of this paper which includes three aspects:
−	 We propose an iterative, generic process for selecting 

sensors for any mobile robot. 
−	 We evaluate combinations of various filtration algorithms 

in terms of their computational efficiency.
−	 We introduce an approach for utilising perception and 

motion information into occupancy estimation by means 
of a newly proposed Hit Layer.

The following sections describe the contributions in details.

2. Selection of sensors

Selecting an appropriate sensor rig for mobile navigation is not 
a trivial task and it depends on multiple factors related to both 
robot’s mechanical features (e.g. dimensions and inertia) and 
application specifics, which may lead to contradicting require-
ments. For example, one might require high resolution of data 
and simultaneously low hardware costs. Better-quality sensors 
are typically more expensive. In such a situation, a question 
arises of which parameters should be sacrificed. To facilitate 
the decision, we introduce a selection process that takes into 
account multiple aspects and formulate it as a multi-objective 
optimization problem with metrics relaxation. The overview 
of the process is depicted in Fig. 1. The base of our propo-
sal is the definition of eight Application Requirements and six 
Sensor Features which are the starting point for the selection 

process. Careful analysis of these two groups of parameters 
allows us to formulate Rig Selection Metrics which are quan-
titative expressions of the system requirements. The metrics 
are split into Satisficing Metrics which aim to define boundary 
selection conditions for the sensors and the Optimizing Metric 
which allows finding the best constrained solution.

The selection process should be conducted as follows. At the 
start, one should define the set of most desirable parameters 
of the complete rig i.e. the most strict Satisficing Metrics for 
which the knowledge about the Application Requirements and 
the Sensor Features should be used. At this stage, multiple 
sensors can be considered. Details are described in Sections  2.1 
and 2.2. Very likely, at the first step, multiple high-quality 
devices will be picked, but the choice implies the costs of both 
the sensors and the hardware to process the data arriving 
from them. This leads to the initial value of the solution costs, 
which we define as the Optimizing metric. If, after the first ite-
ration, the result is within the budgetary limit of the project, 
the selection can be directly used for the robot’s sensor rig. 
If not, one must repeat the process, by iteratively relaxing the 
Satisficing Metrics until the reasonable cost level is reached.

2.1. Application requirements definition
To be able to specify the needs of the application, we propose 
to characterise the intended system according to the following 
requirements (for the extended names and process scheme 
refer to Fig. 1):
R1 The physical dimensions of the robot and the required 

area that should be perceived constantly around it need 
to be defined.

R2 Kinematics and the intended direction of the robot 
motion should be considered. E.g. if the robot travels 
forward only, a sensor on the back is redundant.

R3 It is also important to match how quickly and how far the 
robot can see with the application it is intended to. For 
example, if the robot is supposed to detect dead-ends on 
the fly, while travelling across a complex combination of 
corridors, both the range and the frequency should allow 
correct decisions. This metric is coupled heavily to the 
environment characteristics and path planning algorithm 
used by the robot.

R4 Various objects in the environment can appear in the 
robot’s surroundings rapidly or slowly. It is important to 
ensure that the frequency of observation (the frame rate) 
is fast enough to notice object dynamics, i.e. that the 
robot can notice the motion of the object quickly enough 
to react [12].

R5 Similarly, the frame rate should be adjusted to the robot’s 
velocity. Distance travelled between consecutive observa-
tions should be small enough to allow the robot to replan 
the path and avoid obstacles on the way.

R6 The resolution of the sensor should be high enough to 
notice the tiniest objects that can endanger the robot. For 
example, if the environment is full of hanging, thin cables 
the sensor must be able to reflect them in the perceived 
point cloud [13].

R7 This requirement expresses how accurately the objects 
should be perceived by the robot to safely conduct its 
operation. Low-quality sensors might experience dis-
tortion that influences reconstruction accuracy, which, 
depending on the application, might become harmful. 
As an example, a sensor might not be considered flat the 
surfaces that actually are flat [14].

R8 The lighting in the environment has a direct impact on 
a sensor’s performance. If the robot is supposed to work 
with limited light or in darkness, the sensors’ visible light 
spectrum must be selected accordingly, potentially with 
active projection [15].
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2.2. Sensors features
Comparison of different sensors exceeds the scope of this paper, 
as the variety of available solutions is massive. There exists 
multiple publications on sensor types and technologies. Spe-
cifically detailed description and comparison can be found in 
[16, 17]. A comprehensive explanation of various characteri-
stics of sensors in [18], Chapter 4. To be able to conduct the 
analysis process, the following features of potential sensors 
should be considered:
−	 Range: what is the distance at which the sensor can effec-

tively notice an object
−	 FOV: Field Of View, defines the shape of the perception 

space. Usually a pyramid or cone.
−	 Frequency: (alternatively Frame Rate), a notion of how 

often the sensor can receive views of the environment.
−	 Resolution: how many discrete points are available per 

single scan and FOV cross-section. Usually, drops with 
the range.

−	 Noise and accuracy: expresses the noise level and ability 
to precisely reconstruct object shapes.

−	 Perception Technology: how is the point cloud generated 
e.g. Stereo Camera (passive), Structured Light (active), 
Time Of Flight (active) etc.

2.3. Satisficing metrics
Having analysed Application Requirements and Sensor 
Features one can conclude five metrics that are intended to 
define the “No-go” limits of the selection. In other words, 
Satisficing metrics are the system’s minimum requirements 
at the given selection process iteration. The list includes 
(brackets explain the corresponding units):
−	 Spatial Coverage SC [% of coverage], described in details 

in the following section.
−	 Resultant Frequency F [Hz], encompasses the publica-

tion frequency of all sensors (i.e. how often new data is 
observed) and expresses the combined metric as the fre-
quency of the slowest sensor.

−	 Resultant Resolution R [mm], expressed as the resolution 
of the lowest-resolution sensor at the distance of interest.

−	 Resultant Noise N [mm], expressed as the noise level of 
least accurate sensor.

−	 Light Fluctuations Immunity L [binary], we propose as 
binary metric whether the sensor can handle given lighting  
conditions.
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and footprint
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motion 
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in the form of Multi-Objective Optimization 
with Metrics Relaxation
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It is important that Satisficing metrics are not modified 
directly. Instead, Application Requirements and Sensor Fea-
tures should be adjusted (relaxed) to alter Satisficing metrics.

Spatial Coverage SC For the purpose of this paper, we intro-
duce a new metric that encapsulates the notion of how well 
the space around the robot is covered. Where and how the 
sensors are mounted on the robot results in a complex shape 
of the combined FOV, as shown in the example from Fig. 2a). 
To qualitatively express the coverage, we propose to compute 
intersections of the combined Field of View at various angles 
around the vertical axis of the robot and calculate areas cov-
ered by sensors in each intersection from ground to the robot’s 
height h. As the robot has a non-zero diameter, we propose 
to take into account only the area from the robot’s exterior 
r to the given range d. Examples of such intersections for 
r  = 450 mm and d = 3500 mm can be seen in Fig. 2b, c). As 
it is visible, depending on the angle, different ratio of space 
is covered by the combination of the sensors. We propose to 
combine the coverage ratios into the Spatial Coverage met-
ric expressed as two graphs of coverage plotted against rota-
tion angle, as depicted in Fig. 2 d, e). The first one shows the 
complete coverages h × [r, d]. We also introduce the second 
metric which corresponds to floor coverage within the range 
[r, d]. To justify the purpose of the second metric, one must 
remember that most obstacles “stand on the ground” there-
fore even if an object is not completely visible, noticing just 
the bottom part might be sufficient for efficient navigation. As 
this is very application-specific, it is a designer who needs to 
decide to which part of the complete space (as defined by the 
first graph) the system can be limited. If there are hanging or 
“sticking-out-of-wall” objects in the environment, they may 
impose danger to the robot as depicted in Fig. 7. This however 
can also be mitigated software-wise as described in section 4.

2.4. Optimizing metric and iterative relaxation
The final optimization parameter of the process is the purchase 
cost of the complete system. It consists of multiple elements 
mentioned in the following section:

Overall cost of sensors This cost component is expressed as 
the sum of prices Psi of all sensors:

 1 2 .s s s snC P P P= + + +  (1)

Overall cost of data transfer hardware This cost compo-
nent incorporates the purchase price of devices like routers, 
cables, and network cards. To select appropriate components 
the amount of data per second generated by each sensor must 
be computed. More specifically, each sensor occupies a spe-
cific bandwidth Bi, which is a product of the weight of single 
data shot wi and i-th sensor’s frequency fi, expressed in Bps 
(bits per second):

 .i i iB fω= ⋅  (2)

Where wi results from the Field of View of the sensor, reso-
lution, precision of data representation etc., and is a character-
istic of each device usually expressed in bytes. The bandwidth 
occupied by all sensors is the sum of each sensor’s bandwidth:

 1 2 .nB B B B= + + +  (3)

Each component in the transfer system (cables switches, 
routers etc.) should be selected to have a bandwidth capacity 
higher than all sensors’ bandwidth Btj > B. The cost of transfer 
components is the sum of prices Ptj of all m devices and com-
ponents in the system that fulfill the aforementioned criterion:

 1 1 2 2( ) ( ) ( ).t t t t t tm tmC P B P B P B= + + +  (4)

Cost of CPU This cost component describes the cost of a pro-
cessing unit used for performing operations on the data arriv-
ing from sensors. To define processing power requirements of 
such a CPU, two factors need to be taken into accout:
−	 Processing power for sensor operation. Each sensor 

is operated by means of a software driver which performs 
data reception, conversion into the appropriate format, and 
communication with higher-level software. The exact pro-
cessing power requirement for i-th sensor Upi is difficult to 
analytically compute and requires experimental measure-
ment for each sensor. 

−	 Processing power for data filtering. If a sensor needs 
specific preprocessing e.g. filtering, additional CPU power 
is needed Ufi. Further analysis of this topic is described in 
Section 3.
The CPU should be selected in a way that fulfills the fol-

lowing condition:

 

1 2

1 2

.

p p p pn

f f f fn

CPU p f

U U U U

U U U U

U U U

= + + +

= + + +

> +



  (5)

And the cost of the CPU is the purchase price of a device:

 ( ).c CPUC P U=  (6)

Finally, the overall cost of the system is expressed simply as 
the sum of all costs mentioned above:

 .s t cC C C C= + +  (7)

If the resultant cost exceeds the intended budget, one 
should return to the initial step and relax the Application 
Requirements and desired Sensor Features. At this step, if it 
is mechanically possible, one might consider modifying the 
mounting position of the sensors. When wisely considered, 
this can even reduce the number of sensors. Finally, the pro-
cess of relaxation should be repeated until a satisfactory cost 
is achieved.

2.5. Applicability
UR Cleaner use case The described process was used for the 
selection of sensors for the autonomous cleaning robot The 
resultant sensor rig consists of five depth sensors. Kinect Azure 
[26] as the front sensor, three PMD pico flexx [27] for side and 
back and the Velodyne VLP-16 Puck [28] for the top. The 
Satisficing metrics for which the acceptable cost level (which 
cannot be disclosed due to business sensitivity) was reached are 
described in Table 1. The SC metric for this robot is depicted 
in Fig. 2 d, e).

Tab. 1. Satisficing metrics for industrial use case
Tab. 1. Metryki satysfakcjonujące w przypadku przemysłowego robota 
sprzątającego

F [Hz] R [mm] N [mm] L [binary]

15 122 30 True

Potential of generalization The proposed approach for the 
selection of sensors was designed to generalize for various 
robot types. Specifically one can consider a situation when 
the robot does not move on a flat surface but instead moves 
on uneven terrain, in the air, or under water. In such scenar-
ios, the robot’s orientation varies in a 3D space. Importantly, 
all Application Requirements remain valid but require careful 
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a)

b)                                                                                                         c)

d)       e)       e)

Fig. 2. Explanation of the SC metric. a) 3D view of sensors’ FOV; 
b, c) examples of cross-sections at specific angles; d, e) plots 
of metric evaluation for complete coverage and floor coverage. 
The angles of cross-section are evaluated from 0° to 180° as the 
sensors are symmetrically positioned on both sides of the robot
Rys. 2. Opis metryki SC. a) widok 3D przedstawiający pole widzenia 
czujników; b, c) przykładowe przekroje w wybranych kątach; d, e) wykresy 
oceny metryki dla całkowitego pokrycia oraz pokrycia powierzchni podłogi. 
Kąty przekrojów analizowane są od 0° do 180°, ponieważ czujniki są 
symetrycznie rozmieszczone po obu stronach robota

analysis and potentially experimental verification. E.g. the 
same sensor working in an outdoor environment might expe-
rience different noise characteristics than in the indoor case. 
Similarly, the dynamics of the objects in the environment and 
the size of obstacles heavily depend on the application use 
case. Nevertheless, most of the Satisficing Metrics, namely F, 
R, N, L remain fully valid regardless of the working condi-
tions of the robot whether it is an outdoor, indoor, structured 
environment, air or underwater robot. The remaining metric 
i.e. SC is defined within the space limited by the flat ground 
in the bottom and specific height at the top. Such a definition 
is especially useful for robots operating in structured environ-
ments and does not apply to robots whose orientation varies 
in 3D space. It can however be easily generalized by not reduc-
ing the lower and upper limits but using the complete sphere 
around the robot instead.

3. Data preprocessing

When the sensors are selected one has to consider whether 
using raw data outputs for multi-sensor systems is feasible. 
Sensors produce high-frequency data that can strain the robo-
t’s computational resources. Filtering serves to reduce the data 

volume, thereby facilitating more efficient real-time proces-
sing. Furthermore, it diminishes noise and filters out irrelevant 
information, enhancing the accuracy of environment mapping, 
object detection, and navigation. This specifically allows to 
use cost-effective sensors while ensuring data quality thro-
ugh effective filtering techniques. Additionally, filtering ensu-
res that data processing is consistent with sensor data rates, 
preventing delays and enabling timely responses to dynamic 
environmental conditions.

Multiple filtration methods have been developed so far and 
can be used together but the overall performance is highly 
dependent on the combination of parameters and sequence of 
processing. This section introduces some wellknown filtration 
methods and evaluates the influence of the order of execution 
on computational efficiency. A comparative evaluation is pre-
sented based on experimental results.

3.1. Preprocessing methods
Out of multiple algorithms which have been developed so far, 
we selected four well-established methods that, in our asses-
sment, are sufficient to construct effective filtering pipelines:
−	 Statistical Outlier Removal — a method that removes noise 

by analysing the distribution of distances between neigh-
bouring points. Points with distances significantly deviat-
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ing from the mean are classified as outliers and excluded, 
resulting in a cleaner and more reliable point cloud [7, 19]. 
The filter is parameterized by the number of neighbouring 
points N and the standard deviation multiplier M, which 
defines the threshold as a multiple of the standard deviation 
from the mean distance. Points falling outside this range are 
classified as outliers and subsequently removed.

−	 Voxel Grid Filtering — A method for downsampling point 
clouds by approximating points within a cubic region 
(voxel) with their centroid [7, 19]. The process is parame-
terized by a voxel grid size V.

−	 Pass-Through Filters — a method that selects points within 
a specified range along a given axis (e.g., x, y, or z). Points 
outside this defined interval are excluded, allowing for tar-
geted segmentation of a region of interest [19]. Parametrized 
by coordinates of interval <A, B> along given axis.

−	 RANSAC (Random Sample Consensus) algorithm for plane 
segmentation — an algorithm used to identify and segment 
planes in point clouds by fitting models to random subsets 
of points and selecting the model with the highest number 
of inliers [19, 20]. Parametrized by max iterations I that 
specifies the maximum number of iterations to run, deter-
mining how many random samples are tested and distance 
threshold T that defines the maximum allowable distance 
from a point to the plane for it to be considered an inlier.
Despite their simplicity, these techniques can be com-

bined to create efficient filtration pipelines that address the 
constraints of time and resources. We will present example 
pipelines that integrate these filters to achieve both resource 
efficiency and effective operation.

3.2. Proposed filtration pipelines
In this study, we propose four distinct data filtration pipelines 
for point cloud processing, which essentially consist of various 
combinations of the four basic filtration algorithms described 
before. We aimed to develop a filtration pipeline that allows 
getting rid of information that is irrelevant for the navigation 
and would cause unnecessary load when other algorithms of 
a robot, such as navigation, utilise the data. This can be achie-
ved not only by reducing the noise level and downsampling 
the point clouds but also by making additional assumptions. 
More specifically, in our case, the sensors are firmly located in 
the robot’s reference frame and the robot is always traveling 
on the ground, therefore the surface of contact (floor) can be 
removed. This further reduces the weight of the point cloud. 
With this in mind, we propose four pipelines consisting of noise 

Fig. 3. Proposed filtration pipelines
Rys. 3. Proponowane sposoby filtracji

Fig. 4. Top: Example initial point cloud, Bottom: Corresponding result 
point cloud for Pipeline 4
Rys. 4. Góra: Przykładowa wejściowa chmura punktów; Dół: ta sama 
chmura odfiltrowana zgodnie z procesem Pipeline 4

removal, size reduction, and floor removal in various combina-
tions as depicted in Fig. 3.

For the first three pipelines, a two-step process for floor remo-
val, referred to as “Floor Removal 1”, is implemented in the 
following manner:
1. The region of interest, where the floor plane is assumed 

to be located, is identified using a pass-through filter. The 
point cloud is divided parallel to the estimated floor plane, 
creating a slice within which the plane is searched.

2. The floor plane is then segmented using the RANSAC algo-
rithm and corresponding points are removed.

In the fourth pipeline, the floor removal process, referred 
to as “Floor removal 2”, is enhanced by introducing an addi-
tional voxelization step, applied to a copy of the original point 
cloud before running the RANSAC algorithm. By using a voxel 
filter with larger voxel dimensions, the floor plane equation 
can be determined more efficiently, allowing points to be seg-
mented based on their distance from the plane (same value as 
RANSAC threshold).

3.3. Empirical Experiment Results
Experiments on proposed pipelines were conducted using 100 
example point clouds gathered from an interior of UR offices 
employing Microsoft Azure Kinect ToF camera. They consist of 
vast open spaces (typical for industrial cleaning robots), as well 
as office objects like tables, chairs, etc. An example point cloud 
that consists of 144 545 points, is presented in Fig. 4, top. We 
assume that the point cloud is already in the robot’s naviga-
tional coordination frame that is placed on the floor plane. 
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Tab. 2. Filters parameters for analyzed pipelines. V1 is voxel grid size 
for “Voxel Grid Filtering 1” and V2 for “Voxel Grid Filtering 2”
Tab. 2. Wartości parametrów filtrów dla analizowanych sposobów filtracji; 
V1 – wielkość siatki woksela dla „Voxel Grid Filtering 1”, V2 – dla „Voxel Grid 
Filtering 2”

N M A [cm] B [cm] T [cm] I V1 [cm] V2 [cm]

10 1 -10 10 3 100 3 30

Fig. 5. Comparison of the four filtering pipelines by their average 
processing time total and in each stage
Rys. 5. Porównanie czterech proponowanych sposobów filtracji pod 
względem całkowitego średniego czasu przetwarzania oraz czasu 
przetwarzania na każdym z etapów

Fig. 6. Comparison of the four filtering pipelines by their average 
number of points in resultant point clouds and average number of 
points in corresponding initial point clouds
Rys. 6. Porównanie czterech proponowanych sposobów filtracji pod 
względem średniej liczby punktów w uzyskanych chmurach punktów oraz 
średniej liczby punktów w odpowiadających im początkowych chmurach 
punktów

timeefficient option) demonstrates the successful elimination of 
the floor plane and a reduction in the number of small outliers, 
thereby providing accurate yet efficient environmental recon-
struction. The differences in memory consumption across the 
pipelines are negligible, amounting to around 200 MB of RAM 
memory on average for each pipeline. This indicates that the 
proposed methods can be effectively applied in mobile robotics, 
enhancing autonomous navigation capabilities.

Fig. 7. Examples illustrating navigation challenges caused by 
partial sensor coverage. (a) The obstacle protruding from the wall is 
detectable in pose p1 relative to the robot, but after the robot’s linear 
displacement, it becomes undetectable in the new relative pose p2. 
(b) An obstacle below the Lidar’s detection range is identified by the 
front sensor, but after the robot’s rotation, it is no longer detectable
Rys. 7. Przykłady ilustrujące wyzwania nawigacyjne spowodowane 
częściowym pokryciem przestrzeni przez czujniki. (a) Przeszkoda 
wystająca ze ściany jest wykrywalna w położeniu p1 względem robota, ale 
po liniowym przemieszczeniu robota staje się niewykrywalna w nowym 
położeniu p2. (b) Przeszkoda znajdująca się poniżej zasięgu detekcji 
LIDARa jest identyfikowana przez czujnik przedni, jednak po obrocie robota 
przestaje być wykrywana

Thanks to that, the time required for transformation is igno-
red and the operation of floor plane removal is more intuitive.

To get a comparable result, the same filters used in different 
pipelines have the same parameters, as presented in Tab. 2. To 
select filtration parameters, prior to the experiments, an exten-
sive review of scientific literature on point cloud filtering tech-
niques was conducted. The review identified only a single study 
that implemented precise versions of both statistical outlier fil-
tering and voxel grid filtering, along with a thorough parameter 
analysis [6]. To the best of our knowledge, no existing studies 
offer a comprehensive evaluation of filter parameters. Due to 
that, the parameter values for this research were established 
based on the authors’ industrial experience, ensuring an opti-
mal balance between detailed scene reconstruction and pro-
cessing efficiency, while preserving crucial data necessary for 
navigation. The initial voxel grid filtering was configured with 
a grid size large enough to reduce the number of points, yet 
small enough to maintain an appropriate resolution for accurate 
object representation. Parameters for statistical outlier removal 
were selected to eliminate outliers without omitting small 
objects. The parameters for floor removal (using RANSAC 
and Pass-through filters) were optimized to ensure computa-
tional efficiency while retaining small floor-level objects. For 
the secondary voxel grid filtering, a larger grid size was chosen 
to accelerate processing without compromising critical data. 
Pipelines were compared in terms of processing time (total and 
per stage) as depicted in Fig. 5, and the number of points in 
the resultant point cloud, shown in Fig. 6.

An examination of Fig. 5 reveals that reducing data comple-
xity through basic voxel grid filtering significantly decreases pro-
cessing time. With each subsequent optimization, the processing 
time can be further reduced to below 0.05 seconds, correspon-
ding to a frequency exceeding 20 Hz, which is higher than the 
operating frequency of any sensor listed in Table 1 for before 
mentioned UR case. Furthermore, as illustrated in Fig. 4, the 
example output point cloud produced by Pipeline 4 (the most 
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4. Mitigation of limited field of view

Once the detailed analysis is conducted and the optimal arran-
gement of sensors is not achievable due to the system costs, 
one can resort to the algorithmic solution to eliminate the 
threats caused by the blind spots of the sensory rig during the 
navigation. More specifically, with the limited FOV of sensors, 
achieving full coverage of the surroundings at all times is not 
possible. An obstacle may be detected in one position, but as 
the robot moves, the same obstacle could fall into the sensors’ 
blind spot (Fig. 7). This makes navigation challenging, espe-
cially when moving close to the walls and obstacles. To address 
this issue, we propose an approach that utilises spatio-temporal 
sensor’s information.

The core concept of our proposal is to update the naviga-
tion map by integrating both current sensor data and previous 
detections, along with the robot’s movements. This approach is 
implemented within the framework of the costmap [21], a crucial 
component of the navigation stack in the Robot Operating Sys-
tem (ROS) [22]. Nevertheless, it is adaptable and can be applied 
to other navigation systems as well. In the following section, 
we provide a brief overview of the navigation costmaps. This 
is followed by an explanation of the proposed approach, called 
Hit Map, and the presentation of empirical experiment results.

4.1. Costmap-Based Navigation
Navigation systems require a well-defined configuration space. 
Costmaps provide an efficient way to represent the robot’s 
operational environment, facilitating safe and optimal path 
planning. As illustrated in Fig. 8, the Costmap module receives 

4.2. Hit Map
In this section, we propose a new Costmap layer, referred to as 
the Hit Layer. The occupancy grid associated with this layer, 
termed the Hit Map, contains cell values (hit) that are pro-
portional to the duration of time each cell has been detected 
either as an obstacle or free.

Figure 9 depicts the structure of the Costmap module, incor-
porating the Hit Layer. The Costmap module is responsible for 
updating the master grid, a fundamental element for all autono-
mous planning functions, at a predefined frequency. Throughout 
this process, each layer refreshes its respective occupancy grid, 
which in turn contributes to the update of the master grid. 
Although the Costmap module may consist of several layers, 
the Obstacle Layer plays a critical role in the creation and con-
tinuous updating of the Hit Layer.

Obstacle Layer Update The Perception module receives data 
from sensors and applies preprocessing operations (e.g. the 
actions described in Section 3). Processed data is then pub-
lished into specific channels. The Obstacle layer maintains an 
Observation Buffer for each specified data channel. During 
the update process, it modifies the obstacle grid based on the 
most recent data in the Observation Buffers. Each cell in the 
obstacle grid will have one of two values, indicating whether 
it is free or occupied. Then, the master grid is modified based 
on the updated obstacle grid.

Fig. 8. Main components of the navigation system
Rys. 8. Główne komponenty systemu nawigacji

the map and the robot’s pose from the SLAM (Simultaneous 
Localization and Mapping), along with processed sensor data 
from the Perception system [23]. It processes this information 
into a 2-D grid of cells, known as an occupancy grid, which 
serves as the primary input for the planning system. Each cell 
in the occupancy grid has a value representing the cost of tra-
versing through that grid cell [24].

To enhance flexibility and accommodate various navigational 
constraints, a layered approach is proposed that separates the pro-
cessing of costmap data into semantically distinct layers [21, 25].  
In this approach, each layer handles data from a specific source 
using designated functionalities. The Costmap features a pri-
mary occupancy grid, known as the master grid, while each layer 
maintains its own layer grid. Three basic layers are commonly 
used in navigation systems:
−	 Static Layer: Represents data from the Mapping compo-

nent, providing a representation of the environment.
−	 Obstacle Layer: Aggregates data from sensors to represent 

obstacles as a unified obstacle grid. Each grid cell is either 
free or occupied.

−	 Inflation Layer: Accounts for the robot’s dimensions, specifi-
cally its footprint, by inflating the obstacles in the final grid.

The obstacle grid is the main input for the proposed Hit Layer.

Fig. 9. Update process overview of the costmap module which 
includes the proposed Hit Layer: Sensor data is processed and 
published into designated channels, where observation buffers 
temporarily store it. During each update cycle, the Obstacle Layer 
refreshes the Obstacle Grid using the data from the observation 
buffers and updates the Master Grid. The Hit Layer then revises the 
Hit Map based on the current Obstacle Grid and finalizes the Master 
Grid update
Rys. 9. Przegląd procesu aktualizacji mapy kosztów, który obejmuje 
proponowaną warstwę Hit Layer: Dane z czujników są przetwarzane 
i publikowane w wyznaczonych kanałach, gdzie tymczasowo 
przechowywane są w buforach obserwacji. Podczas każdego cyklu 
aktualizacji, warstwa przeszkód odświeża siatkę przeszkód, korzystając 
z danych z buforów obserwacji, i aktualizuje mapę główną. Następnie 
warstwa Hit Layer dokonuje rewizji mapy trafień na podstawie aktualnej 
mapy przeszkód i finalizuje aktualizację mapy głównej
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Hit Layer Update Each Hit Map cell is an integer within the 
range [0, hitmax]. Initially, all cell values are set to zero. The 
Hit Layer updates the Hit Map based on the latest obstacle 
grid received from the Obstacle Layer, as well as the robot’s 
movements in three main steps. Figure 10 illustrates the Hit 
Map update process using a simplified example.

First, the Hit Map is relocated using a Sliding Window appro-
ach, which accounts for the robot’s displacement. Subsequently, 
the portion of the Hit Map corresponding to newly covered areas 

Fig. 10. An illustrative example of the Hit Map update process. In 
this example, the Hit Map is updated when the robot moves to a new 
cell, though in practice, costmaps typically have a higher update 
frequency. On the left, the positions of the obstacle and costmap 
are shown, while the Hit Map is displayed on the right. Cells where 
an obstacle is detected and the hit value is increased are shown as 
incremented cells. Additionally, cells that are free in the obstacle grid 
but have a hit value greater than zero (still considered occupied in the 
final master grid) are displayed as decremented cells
Rys. 10. Przykład ilustrujący proces aktualizacji mapy trafień. W tym 
przykładzie mapa trafień jest aktualizowana, gdy robot przemieszcza się 
do nowej komórki, chociaż w praktyce mapy kosztów zazwyczaj mają 
wyższą częstotliwość aktualizacji. Po lewej stronie przedstawiono pozycje 
przeszkody i mapa kosztów, natomiast po prawej stronie widoczna jest 
mapa trafień. Komórki, w których wykryto przeszkodę i wartość trafienia 
została zwiększona, są oznaczone jako komórki inkrementowane. 
Dodatkowo komórki, które są wolne w mapie przeszkód, ale mają wartość 
trafienia większą niż zero (wciąż uznawane za zajęte w finalnej mapie 
głównej), są wyświetlane jako komórki dekrementowane

is reset to 0, while the cells that remain in the common area 
before and after the update are left unchanged.

In the next stage, the Hit Map is updated. During this pro-
cess, the value of each cell in the Hit Map is recalculated accor-
ding to the corresponding cell in the obstacle grid, as shown in 
equation 8. Let hi represent the i-th cell in the Hit Map, and oi 
represent the i-th cell in the obstacle grid. If oi is occupied, hi is 
increased according to the hit and hitmax parameters. Conversely, 
if oi is free, hi is decreased by one.

 

maxmin( , ) if is occupied,

max(0, 1) otherwise

i i

i

i

h hit hit h
h

h

 +
= 
 −
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Finally, the master grid is updated based on the Hit Map. 
Let mi denote the i-th cell in the master grid, and let coccupied 
represent the cost value of an occupied cell. The value of mi is 
then updated according to equation 9:

 

if > 0,

otherwise
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i

i

c h
m
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= 
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By adding the Hit Layer to the set of layers in the costmap, 
obstacles that have been detected for a longer duration are 
more likely to be retained in the Hit Map, even if they are 
no longer detected. The parameters hit and hitmax control the 
cautiousness of the Hit Layer. Higher values for these param-
eters result in safer navigation, as obstacles are more likely to 
be retained. However, this can also lead to more cells being 
marked as occupied in the costmap. Choosing appropriate val-
ues depends on the specific environment in which the robot is 
operating and the coverage provided by the sensors.

4.3. Motion Condition
The Hit Map update process involves two main operations: 
incrementing and decrementing. By decrementing, occu-
pied cells that are no longer detected by the Obstacle Layer 
will eventually be freed. This helps to prevent costmap from 
becoming cluttered. However, this approach also introduces 
a potential issue. If the robot remains stationary for an exten-
ded period, the Hit Map continues to decrement and free the 
cells. If some of these cells correspond to obstacles that have 
moved into a blind spot, they might not be considered when 
the robot starts moving again.

Fig. 11. Experiment setup for navigation test with and without 
the Hit Layer
Rys. 11. Stanowisko eksperymentalne do testów systemu nawigacji 
z warstwą Hit Layer oraz bez niej
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To address this issue, the motion condition is evaluated 
during the decrement step using two data sources: (1) veloc-
ity commands from the controller and (2) the robot’s dis-
placement over a predefined time interval. Specifically, if 
the robot’s displacement within the specified time period, 
denoted as dduration, falls below a defined threshold dthreshold, 
the robot is considered stationary, and the decrement oper-
ation is skipped.

4.4. Empirical Experiment Results
A test scenario was designed to evaluate the efficiency of 
the proposed Hit Layer. This scenario involves a wallfollo-
wing operation, where the navigation system must guide 
the robot to maintain a close distance to the wall. This is 
particularly challenging in industrial environments, where 
various objects of differing heights may be present near the 
walls and could fall into the sensors’ blind spots. Due to 
the proximity to the wall, such scenarios increase the risk 
of collisions. Specifically risky are the situations where the 
objects do not stretch vertically from the ground but “stick 
out of the wall”.

Figure 11 illustrates the test setup, which includes a table 
with a foam layer on top. The foam extends beyond the 
edges of the table and is only detectable by the robot’s front 
depth camera. We conducted tests both with and without 
the Hit Layer. Table 3 summarizes the parameters chosen 
for the test scenario.

Figure 12 (a) shows the costmap shortly after the wall-
following behaviour begins, but before the robot reaches the 
table. At this stage, the front sensor detects the foam. As the 
robot approaches the foam, it starts navigating around it. 
Figure 12 (b) and (c) represent the costmap in this pose, with 
and without the Hit Layer, respectively. When using the Hit 
Layer, the foam that was previously detected by the camera 
remains in the costmap for an extended period, allowing the 
robot to navigate around it successfully. In contrast, without 
the Hit Layer, the foam disappears from the costmap, caus-
ing the robot to move to close to the table and hit the foam.

5. Conclusions

In this paper, we have presented three strategies that allow 
to engineer an end-to-end perception system of a robot. The 
presented selection process can be used to any autonomous 
robot in a generic way. We also evaluated the applicability of 
various filtration pipelines and experimentally evaluated their 
performance. Finally, we introduced a method to mitigate 
limited sensors FOV thus allowing to fill perception system 
gaps and potentially limit the number of sensors. All strate-
gies were successfully applied in the autonomous floor scrubber 
UR\Cleaner and can be reused in other autonomous robots.
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Fig. 12. Costmaps from the navigation test during wall-
following, with and without the Hit Layer. The graphics 
are generated using rviz tool. (a) Before the robot reaches 
the table, which is within the observation range of the 
front camera. A few seconds later, the robot attempts to 
navigate around the table and the foam placed on it. Due to 
the robot’s rotation, the foam falls into the camera’s blind 
spot. (b) Without further detection, the robot moves too 
close to the table and collides with the foam. (c) Using prior 
detections, the Hit Layer preserves the foam as an obstacle 
in the costmap, allowing the robot to successfully navigate 
around the table
Rys. 12. Mapy kosztów z testu nawigacji w trybie śledzenia 
ścian, z warstwą Hit Layer oraz bez niej. Grafiki zostały 
wygenerowane za pomocą narzędzia rviz. (a) Przed dotarciem 
robota do stołu znajdującego się w zasięgu kamery przedniej. 
Kilka sekund później robot podejmuje próbę ominięcia stołu 
oraz pianki umieszczonej na jego powierzchni. Ze względu na 
obrót robota, pianka znika z pola widzenia kamery. (b) W wyniku 
braku dalszej detekcji robot przemieszcza się zbyt blisko stołu 
i uderza w piankę. (c) Dzięki wcześniejszym detekcjom warstwa 
Hit Layer zachowuje piankę jako przeszkodę na mapie kosztów, 
umożliwiając robotowi skuteczne ominięcie stołu

Tab. 3. Hit layer parameters selected for the wall-following navigation 
test
Tab. 3. Parametry warstwy Hit Layer wybrane do testów nawigacji w trybie 
śledzenia ściany

hit hitmax dthresh [mm] dduration [s]

3 1500 0.1 10
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Streszczenie: Dobrze zaprojektowany system percepcji jest kluczowy dla prawidłowego działania 
autonomicznego robota mobilnego, jednak jego stworzenie nie jest trywialnym zadaniem. Aby 
stworzyć kompleksowy system, należy brać pod uwagę nie tylko cechy samych czujników, ale 
także sposób, w jaki dane z nich są używane do działania robota. W artykule przedstawiono 
zestaw ścisłe powiązanych strategii, które umożliwiają stworzenie kompleksowego systemu 
percepcji, wykorzystującego reprezentację 3D w postaci chmur punktów. Nasza propozycja jest 
na tyle uniwersalna, że może być stosowana w różnych robotach mobilnych, ponieważ uwzględnia 
kontekst działania robota oraz ograniczenia sprzętowe. Pierwszą strategią jest wprowadzenie 
sformalizowanego procesu wyboru czujników, ujętego jako problem optymalizacji wielokryterialnej 
z relaksacją metryk, co pozwala na wybór optymalnego zestawu czujników w ramach ograniczeń 
budżetowych. W drugiej strategii weryfikujemy różne metody filtrowania danych i ich kombinację 
w kontekście systemu nawigacji, aby znaleźć kompromis między dokładnością a nakładem 
obliczeniowym. Wreszcie, aby zniwelować suboptymalne pole widzenia połączonych czujników 
i ulepszyć system percepcji, proponujemy nową koncepcję warstwy siatki zajętości, która 
wykorzystuje informacje o ruchu w obliczeniach dostępności obszaru nawigacyjnego. W ramach 
badań, przeprowadziliśmy eksperymentalną weryfikację tych strategii i zastosowaliśmy wyniki 
w autonomicznym robocie sprzątającym.

Słowa kluczowe: percepcja robotyczna, roboty autonomiczne, sensory robotyczne, robotyka, nawigacja, filtracja danych 
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