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1. Introduction

One of main areas of application fractional order calculus in 
automation is a FOPID control. Results presented by many 
Authors, e.g. [2, 4, 12, 13], show that FOPID controller is able 
to assure better control performance than its integer order 
PID analogue.

Each digital implementation of FOPID controller (PLC, 
microcontroller) requires to apply integer order, finite dimen-
sional, discrete approximant. The most known are: FOBD and 
CFE (Continuous Fraction Expansion) approximations [1]. 
They allow to estimate a non-integer order element with the 
use of a digital filter. The detailed comparison of both methods 
was done e.g. in [8]. The use of these methods in the FOPID 
controller were also considered in the paper [10]. 

For elementary fractional-order integrator/differentiator 
an analytical form of the step response is known [4]. It can 
be applied as the reference in a cost function describing an 
accuracy of an approximation. Typically such a cost function 
describes an accuracy only and it does not inform about ano-
ther properties of an approximant, for example its numeri-
cal complexity.

This paper deals with the numerical analysis of the accuracy 
and numerical complexity of the discrete implementation of 
the FOPID controller. This implementation uses the FOBD 
approximation to express of the fractional parts of the control-
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ler. Unfortunately, the good accuracy of this approximation 
requires to apply of long memory. Of course, this improves 
a numerical complexity of approximant and consequently incre-
ases a duration of calculations. This implies that an implemen-
tation of such an algorithm should be preceded by an analysis 
of both accuracy and numerical complexity. To do it various 
cost functions containing these both factors need to be used.

The paper is organized as follows. Preliminaries draw the-
oretical background to presenting of main results. Next the 
proposed cost functions are proposed and employed to testing 
of the considered, approximated FOPID algorithm. Finally 
results are discussed.

2. Preliminaries 

2.1. Elementary ideas 
Elementary ideas from fractional calculus can be found in 
many books, for example: [5, 6, 12, 14]. Here only some defi-
nitions necessary to explain of main results are recalled. 

Firstly the fractional-order, integro-differential operator is 
given [5, 7, 14]:

Definition 1 (The elementary fractional order operator) 
The fractional-order integro-differential operator is defined 
as follows: 
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where a and t denote time limits for operator calculation, 
α ∈   denotes the non-integer order of the operation.
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Next remember an idea of Gamma Euler function [7]:

Definition 2 (The Gamma function) 
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Furthermore recall an idea of Mittag-Leffer functions. The two 
parameter Mittag-Leffer function is defined as follows:

Definition 3 (The two parameter Mittag-Leffer function) 
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For β = 1 we obtain the one parameter Mittag-Leffer function: 

Definition 4 (The one parameter Mittag-Leffer function) 
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The fractional-order, integro-differential operator (1) can be 
described by many definitions. The “classic” have been pro-
posed by Grünwald and Letnikov (GL Definition), Riemann 
and Liouville (RL Definition) and Caputo (C Definition). In 
this paper C and GL definition will be employed. They are 
recalled beneath [4, 11].

Definition 5 (The Caputo definition of the FO operator) 
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where n − 1 < α < denotes the non-integer order of operation 
and Γ(..) is the complete Gamma function expressed by (2).

For the Caputo operator the Laplace transform can be defi-
ned [6]: 

Definition 1. (The Laplace transform of the Caputo operator)
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Definition 2. (The Grünwald-Letnikov definition of the FO 
operator) 
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In (7) 
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 is the binomial coefficient:
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2.2. The FOBD operator 
The GL definition is limit case for h → 0 of the Fractional 
Order Backward Difference (FOBD), commonly employed in 
discrete FO calculations (see e.g. [12], p. 68): 

Definition 3. (The Fractional Order Backward 
Difference-FOBD)
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The coefficients (10) are functions of order α. They can be also 
calculated with the use of the following, equivalent recursive 
formula (see e.g. [4], p. 12 ), useful in numerical calculations:
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It is proven in [3] that: 
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From (11) and (12) we obtain at once that:
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In (9) L denotes a memory length necessary to correct appro-
ximation of a non-integer order operator. Unfortunately good 
accuracy of approximation requires to use a long memory L 
what can make difficulties during implementation. 

The approximator FOBD (9) can be described by the G(z−1 ) 
transfer function in the form of the FIR filter containing 
only zeros:
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where ( )ld α  are expressed by (10) or equivalently by (11), h 
is the sample time and α is the fractional order. The transfer 
function (14) is typically applied to approximate of the frac-
tional operator (1).

2.3. The FOPID controller
The FOPID controller is described by the following transfer 
function (see e.g. [4], p. 33): 

	 ( ) .c P I DG s k k s k sα β−= + + 	 (15)

where ,α β ∈   are fractional orders of the integration and 
derivative actions and kP, kI and kD are the coefficients of the 
proportional, integral and derivative actions respectively.
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The analytical formula of the step response of the control-
ler (15) takes the following form [9]:
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where Γ(..) is the complete Gamma function (2). This analyt-
ical formula will be used as the reference to estimate of the 
accuracy of the approximation. 

The discrete implementation of the controller (15) using 
approximator (14) is as beneath: 

	 ( ) ( ) ( )1 1 1, , .cFOBD P I FOBD D FOBDG z k k G z k G zα β− − −= + − + 	 (17)

The step response of the approximated controller (17) takes 
the following form: 
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The formula (18) can be computed numerically with the use 
of step function from MATLAB. It is the function of a time 
and memory length L. The memory length determines also the 
accuracy of the implementation. The accuracy as a function of 
L was analyzed e.g. in the paper [9]. Here both accuracy and 
numerical complexity will be examined. Cost functions used 
to do it are proposed in the next section. 

3. The considered cost functions 

At the beginning consider the accuracy of approximation. It 
will be tested using known IAE and ISE cost functions, cal-
culated at the discrete time grid and for finite time interval:
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where k = 1, ..., Kf  are the discrete time instants, h is the sam-
ple time. Consequently the final time of computing is equal:

	
.f ft hK= 	 (21)

Error e(k) describes the difference between analytical and 
approximated step responses (16) vs (18) in the same time 
moment k: 

	 ( ) ( ) ( ) , 1, , .a FOBD fe k y kh y k k K= − =  	 (22)

Next the numerical complexity should be tested. Its sim-
pliest estimation is the experimentally measured duration of 
calculation of the step response (18). It is a function of memory 
length L and it can be measured during working of software 
MATLAB. Of course, such an estimation is strongly deter-
mined by a hardware-software platform, but it contains more 
general information too. 

A platform-independent measure of the numerical complex-
ity of the considered approximation is the memory length  L. It 
will be employed in the new proposed cost functions, describ-

ing accuracy and complexity associated together. They take 
the following form: 

	 ( ) ( )1 2 .IAED L IAE L Lω ω= + 	 (23)

	 ( ) ( )1 2 .ISED L ISE L Lω ω= + 	 (24)

where IAE(L) and ISE(L) are described by (19) and (20) 
respectively, ω1 + ω2 = 1.0 are the normalized weight coeffi-
cients.

4. Simulations

Simulations were executed at the MATLAB platform using the 
function step to compute of the step response and functions 
tic, toc to measure the duration of computations. For each 
tested value of L the mean value of 100 tests was examined. 
Tests were done for fixed parameters kP, kI and kD of control-
ler and various fractional orders α and β and memory length 
L. Values of all parameters applied during tests are collected 
in the table 1.

Table 1. Values of all parameters used during the tests
Tabela 1. Zestawy wartości parametrów regulatora  zastosowane do testów

Parameters 1 2 3

α −0.25 −0.50 −0.75

β 0.25 0.50 0.75

kP 1 1 1

kI 1 1 1

kD 1 1 1

h [s] 0.1 0.1 0.1

tf [s] 100.0 100.0 100.0

Range of L 100−1000 100−1000 100−1000

Incrementation of L 100 100 100

No of tests for single L 100 100 100

Final time tf [s] 100 100 100

Weights ω1, ω2 0.5, 0.5 0.5, 0.5 0.5, 0.5

At the beginning the accuracy described by the cost func-
tions (19) and (20) was examined. Comparing of step responses 
for Parameters 2 and L = 100, 500 and 1000 are shown in the 
Figure 1, the cost functions IAE and ISE as functions of mem-
ory length L are presented in the Figure 2.

In Figures 1 and 2 it can be seen that the accuracy of the 
approximation is determined by the memory length L as well 
as the fractional orders of the controller α and β. The accuracy 
is generally better for smaller orders and decreases for their 
values tending to one.

Furthermore the average duration of computing was tested. 
Results are illustrated by the Figure 3.

The Figure 3 allows to conclude that the duration of calcu-
lation does not depend on the orders α and β and it is approx-
imately a linear function of the memory length L. This allows 
to use the memory length L as a direct measure of a numer-
ical complexity.
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Fig. 2. The cost functions (19) and (20) for the approximated step 
response (18) and various fractional orders given in the table 1: 
Parameters 1 – top, Parameters 2 – middle, Parameters 3 – bottom
Rys. 2. Wskaźniki jakości (19)  i (20) dla aproksymowanej odpowiedzi 
skokowej i różnych rzędów ułamkowych podanych w tabeli 1:  
zestaw parametrów 1 – góra, zestaw parametrów 2 – środek i zestaw 
parametrów 3 – dół 

Fig. 1. The step responses ya(t) vs yFOBD(kh) for Parameters 2 and 
memory lengths: L = 100 – top, L = 500 – middle and L = 1000 bottom
Rys. 1. Porównanie odpowiedzi skokowej analitycznej i aproksymowanej 
dla zestawu parametrów nr 2 oraz długości pamięci: L = 100 – góra,  
L = 500 – środek i L = 1000 – dół
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Fig. 3. Duration of calculations of the step response of the FOPID 
approximated by FOBD for various fractional orders
Rys. 3. Czasy obliczeń podczas wyznaczania aproksymowanej odpowiedzi 
skokowej dla różnych rzędów ułamkowych

Fig. 4. The cost functions (23) and (24) for the approximated step 
response (18) and various fractional orders given in the table 1: 
Parameters 1 – top, Parameters 2 – middle, Parameters 3 – bottom
Rys. 4. Wskaźniki jakości (23) i (24) dla aproksymowanej odpowiedzi 
skokowej (18) oraz rzędów ułamkowych z tabeli 1: zestaw parametrów  
1 – góra, zestaw parametrów 2 – środek i zestaw parametrów 3 – dół 

Finally the complex cost functions (23) and (24) were exam-
ined. During tests the weights ω1 and ω2 were set equal 0.5 for 
each test. Such values well describe balancing between accu-
racy and numerical complexity.

The diagrams in the Figure 4 show that the best compro-
mise between accuracy and numerical complexity is achieved 
for memory length L located in the range between 200 and 400.

5. Final Conclusions 

The main result from this paper is that the minimum memory 
length L = 100 is able to assure the good accuracy only for 
lower fractional orders in the approximated FOPID controller. 
For higher orders, greater than 0.5 it is required to apply mem-
ory length not smaller than 200. The numerical tests shown in 
this paper can be expanded to find many other dependencies 
between accuracy, memory length, fractional orders α and β, 
coefficients kP,I,D of controller, sample time, value of final time 
tf and so on.

Interesting can be also formulating of general analytical 
conditions associating an accuracy and a convergence of an 
approximation to a duration of computations at industrial 
device, e.g. at a PLC.
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Streszczenie: W artykule zaproponowano metodologię analizy numerycznej dyskretnego, 
aproksymowanego regulator PID niecałkowitego rzędu (regulator FOPID). Ułamkowe części 
regulatora są aproksymowane z wykorzystaniem aproksymacji FOBD (Fractional Order Backward 
Difference). Celem analizy jest znalezienie długości pamięci (wymiaru aproksymacji) optymalnej 
z punktu widzenia zarówno dokładności, jak i złożoności obliczeniowej. W tym celu zaproponowano 
i zastosowano nowe funkcje kosztu, opisujące oba te czynniki. Wynik testów wskazują, że optymalna 
długość pamięci w rozważanej sytuacji powinna leżeć w zakresie między 200 i 400. Proponowane 
podejście może też być wykorzystane do analizy innych dyskretnych implementacji operatora 
niecałkowitego rzędu, wykorzystujących operator FOBD.

Słowa kluczowe: regulator FOPID, aproksymacja FOBD, definicja Grunwalda-Letnikova, dokładność, ISE, ISA, złożoność numeryczna

Analiza numeryczna dyskretnego regulatora PID niecałkowitego 
rzędu na bazie aproksymacji FOBD
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