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1. Introduction

An unmanned ground vehicle (UGV) can be thought of as 
a robotic platform that actively interacts with its environment. 
Accurate surrounding perception and precise localization are 
key requirements for its reliable navigation and safe driving. 
These two tasks need the vehicle to be equipped with the fol-
lowing three main components, i.e., a set of sensors to perce-
ive the external environment; a computing device to process 
data in real time in order to analyze the situation; actuators 
to carry out the required control actions.

Nowadays, light detection and ranging (LiDAR) sensors have 
been employed increasingly for observation of complex envi-
ronment due to their advantages like high scanning accuracy, 
long-distance measurement, high resolution and stability. The 
LiDAR provides information in the form of a point cloud that 
can be used to identify objects around the vehicle to ensure 
collision-free riding. In the case of the fast-moving wheeled 
vehicle, this task requires the use a high-speed computing 
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device, effective data processing algorithms and efficient use 
of memory.

In this paper, we propose a two-stage framework to detect 
and classify cone-shaped objects for the purposes of safe vehicle 
autonomous driving along a designated urban route in the 
shortest possible time. First, shape information is extracted 
from LiDAR data using classifiers available in the MATLAB 
toolboxes. Then, the obtained dataset is divided into four types 
of objects using a developed and implemented algorithm. Cor-
rect recognition of the cones makes it possible to determine 
the vehicle’s position in space, which is the basis for the path 
planning task.

The remainder of this paper is organized as follows. Section  2 
documents the related works. Section 3 presents the mobile 
vehicle and external environment used for experimental trials. 
Section 4 describes a procedure for classifying objects from 
LiDAR data based on layered feature extraction and evaluates 
the effectiveness of the proposed approach. Section 5 presents 
a developed algorithm for the detection of cone-shaped objects 
and results of experiments conducted in real conditions. Conc-
lusions are given in Section 6.

2. Related works

In In recent decades, autonomous vehicles with the perception 
of the environment in terms of intelligent urban traffic have 
been extensively studied [1–8]. In this field, effective object 
detection methods are sought in order to create an environmen-
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tal model around the vehicle and execute path planning. To 
achieve a high level of perception system, sensors such as came-
ras, radars, lasers or LiDARs are installed in vehicles [9–18].

Currently, the last ones are used more and more often in 
unmanned driving [19–24]. Therefore, a lot of works are con-
ducted for processing LiDAR data, especially in the area of 
autonomous navigation and movement [25–28]. Traditional 
detection methods from obtained 3D point clouds primarily 
analyze and extract features, such as geometric or shape attri-
butes, and then classify objects by trained specific classifiers 
[29, 30].

The problem of object detection consists of two main topics, 
namely: object extraction and classification. Therefore, the 
point clouds are first pre-segmented, and potential objects are 
divided into clusters. Then a set of global features is defined 
and the objects are identified as a whole [31].

This work attempts to meet challenges associated with 
object classification from LiDAR data by means of layered 
feature extraction.

The concept of slicing a point cloud cluster to extract featu-
res is not new, but it is usually described as part of the system 
architecture rather than the independent process. An intere-
sting review of the use of vertical point cloud segmentation 
to identify geometrical features of objects was presented by 
Kyriazis and Fudos in [32]. Spinello et al. [33] divided point 
clouds into several layers based on height information. Feature 
extraction and classifier training were then performed for each 
layer. They claimed to achieve overall accuracy more than 
90  %. Kim et al. [34] used layer features to classify people and 
estimate their poses. The interesting approaches to using of 
layer features, based on the curvature of the object, were pre-
sented by Tombari et al. in [35]. Luo and Yan-min [36] used 
horizontal segmentation, plane projection, and shape fitting 
for rapid extraction and reconstruction of building pillars from 
the scene. Their approach was extended by Pu et al. [37] with 
percentile-based pole recognition for detecting objects such 
street lamps. The results showed that focusing on number of 
layers can have a significant impact on computational efficiency 
of the classification method.

Although a lot of works have been done on the layered 
feature extraction technique classification of objects using 
LiDAR data, there are still some problems that require fur-
ther in-depth research. One of them is how to reduce the 
computational load of data processing to obtain the goal of 
real-time operation. During autonomous driving, nearly a hun-
dred objects must be classified in each LiDAR frame with 
a range of up to 50 m, therefore low processing time is a cru-
cial parameter, especially in the case of a fast-moving vehicle. 
In connection with the above the authors present a solution 
in this field which can facilitate the detection of cone-shaped 
objects. The key idea of the presented method is to determine 
a minimum number of layers for given objects, sufficient to 
classify them with an assumed accuracy. It allows to speed up 
time-consuming process of LiDAR data processing and reduces 
the size of stored data.

3. Autonomous vehicle and external 
environment description

The UGV shown in Figure 1, called LEM, was designed and 
built to meet requirements of the AGH University of Science 
and Technology Racing Driverless Vehicle Team. The vehicle 
is an example of a racing car capable of driving in autonomous 
mode. It is the four-wheeled vehicle that can reach speeds of 
up to 120 km/h. The construction has the following parame-
ters: length – 2.8 m, height – 1.2 m, width – 1.4 m and mass 
about 250 kg.

Fig. 1. A view of the LEM unmanned ground vehicle
Rys. 1. Bezzałogowy pojazd naziemny LEM

Fig. 2. The LEM vehicle among cones during a test
Rys. 2. Pojazd LEM między stożkami drogowymi w czasie testu

A task of the vehicle was to drive as quickly as possible 
along a 1,000-meter route, determined according to the fol-
lowing rules: 

 − a left boundary of the track was marked with small 
blue cones,

 − a right boundary of the track was marked with small yel-
low cones,

 − a maximum distance between two cones in the direction of 
travel was 5 m,

 − a maximum transverse distance between two cones was 5 m,
 − big orange cones were placed before and behind lines mar-
king the start and finish.

A view of the LEM vehicle among cones during the field expe-
riment is shown in Figure 2.

A safety driving needs the vehicle to be able to detect and 
recognize objects in the outdoor environment. For these tasks 
the vehicle is equipped with the Velodyne VLP-16 LiDAR sys-
tem mounted on the front spoiler (see Figure 1). This on-board 
perception sensor was chosen because of its advanced technical 
parameters, in particular reliability, power efficiency, and sur-
round view, which makes it ideal for affordable low-speed auto-
nomy. The LiDAR has 16 channels, measurement range up to 
170 meters, accuracy ±30 mm. The key parameters of VLP-16 
can be found in the reference [38]. 

The LiDAR is connected to the on-board NVIDIA Jetson TX2  
data processing unit via the USB 3.0 interface. The unit is equ-
ipped with a Quad-core 2.0 GHz 64-bit ARMv8 A57, a dual-core 
2.0 GHz ARMv8 Denver, a 256 CUDA core 1.3 MHz NVIDIA 
Pascal and 8 GB memory [39]. It runs under the control of  
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Fig. 3. Examples of features extracted from vertical layers
Rys. 3. Przykłady cech wyodrębnionych z warstw pionowych

Fig. 4. Visualization of results of classification procedure for a single 
LiDAR frame
Rys. 4. Wizualizacja wyników klasyfikacji dla pojedynczej ramki systemu LiDAR

the Linux operating systems, and provides greater than 
1TFLOPS of FP16 compute performance. 

4. Classification stage and data processing

Point cloud processing tools included in the Computer Vision 
Toolbox and Statistics and Machine Learning Toolbox were 
used for calculations, available via executable files generated 
in the MATLAB environment and coded in C++.

The objects were detected from the LiDAR data using the 
Euclidean clustering, under assumption that the point clouds 
were normalized between values 0 and 1 and divided into five 
layers. Examples of features extracted from the layers are depic-
ted in Figure 3. Then the isolated objects were split into two 
classes, i.e., cones and others (non-cones).

Figure 4 shows the example of virtual image of the route and 
its immediate surroundings, obtained on the basis of processed 
LiDAR data (a single frame), showing detected the cones and 
not cones on a 50-meter long section.

An efficiency of the feature extraction procedure for different 
number of layers was analyzed by changing parameters in appro-
priate scripts. The initial number of layers was equal to 1 to set 
up a baseline for measuring feature extraction performance. For 
each layer the following parameters were calculated:

 − percent of cluster points belonging to the layer;
 − standard deviation for XY coordinates;
 − average distance from cluster center in XY coordinates.
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The data set, consisting of a total of 1271 objects, was ran-
domly divided into three subsets: training, validation, and 
testing in proportions of 2:1:1, respectively. The training and 
validation sets were used by the Classification Learner app to 
train the classifiers. Then, the testing set was used to evaluate 
the performance of the trained classifiers. The average accuracy 
and the true positive rate (TPR) for both classes of objects 
and three most effective classifiers are presented in Table 1 and 
Figure 5.

From the results presented in Table 1 and Figure 5, the fol-
lowing conclusions can be drawn:

 − the true positive rate (TPR) values for cones and others 
objects are almost on the same level for each layer consi-
dered;

 − starting with a certain number of layers, the effectiveness of 
the classifiers does not improve significantly as the number 
of layers increases.

As mentioned in Section 3, the task of the AGV was to cover 
the route in the shortest possible time. Therefore, low processing 
time per object was the basis for safe autonomous driving of 
the regarded racing car. The last conclusion indicates that the 

Fig. 5. Efficiency of three best 
classifiers against number of 
layers
Rys. 5. Efektywność trzech 
najlepszych klasyfikatorów 
w  zależności od liczby warstw

Tab. 1. Results for different numbers of layers for the best three classifiers
Tab. 1. Wyniki uzyskane dla różnych liczb warstw z użyciem trzech najlepszych klasyfikatorów

Number of layers Best models accuracy [%] TPR cones [%] TPR others [%]

1

69.1 67.0 70.1

68.1 68.9 67.8

68.1 62.1 71.0

2

92.7 86.3 95.5

92.1 96.8 90.1

92.1 94.7 91.0

3

94.3 92.9 95.0

94.0 93.9 94.1

93.7 92.9 94.1

4

93.4 91.8 94.1

92.7 92.9 92.7

92.4 92.9 92.2

5

96.5 93.8 97.7

96.2 95.9 96.4

95.9 95,0 94.5

appropriate selection of the number of layers can be an effective 
way to speed up the processing time of captured LiDAR data.

5. Cone type recognition algorithm
The input to the algorithm is a part of the LiDAR data repre-
senting the vehicle’s surrounding, consisting only of objects 
belonging to the cones class. A task of the algorithm is to 
divide this dataset into four types: big orange cones, blue 
cones, yellow cones and unknown (cones).

A block diagram of the algorithm is depicted in Figure 6. 
The first part calculates basic statistical data about the 
objects, i.e., cones: number of points, average intensity, stan-
dard deviation. In the next step, the point cloud is sorted 
according to coordinates in vertical axis (Z coordinate), using 
the insertion sort. This kind of solution was chosen because it 
works quickly for small number of elements, is simple to imple-
ment and has a low memory consumption. After sorting the 
algorithm extracts the height of the point cloud by subtracting 
the minimum of Z from the maximum of Z. Then, the algori-
thm checks whether the cone is the big orange cone by asses-
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sing its size. It saves time and computational resources as the 
algorithm can accomplish it without checking the color layers. 
The next step is the isolation of layers. The algorithm goes 
through points, summing the intensities of points, and counts 
their number. If the difference between Z coordinates, (called 
delta), is higher than threshold it saves the number of layer 
points in one array and the layer average intensity in another 
array. If the number of layers is less than 3 it is assumed that 
the point cloud is too small to recognize the cone type correc-
tly, hence the algorithm returns the cone type as unknown.

The final part of the algorithm checks whether the cone has 
a bright stripe. It’s done by going through the LiDAR layers, 
starting from the bottom. If the delta between layers is greater 
than standard deviation of the cone intensity, it is assumed that 
the border between body and stripe was reached. The standard 
deviation was used as a threshold due to two reasons. Firstly, 
the further the cone is from the LiDAR system, the smaller the 
dynamic range of the points intensities. Therefore, the stan-
dard deviation is a good indicator of this range. Secondly, it 
was tested in real conditions and for different parameters used 
to differentiate between the layers, the standard deviation tur-
ned out to be the most effective. Then, after checking whether 

it has gone from bright to dark or vice versa, it assigns a label 
(a  Boolean value) to the cone indicating whether it has the 
bright stripe or not. Thus, the cone is treated as either blue 
or yellow, depending on whether it has a bright stripe, or not. 
The algorithm was implemented in MATLAB and tested on 
the dataset containing 1910 items, all represented by five lay-
ers. Results of cones recognition are shown in Figure 7. The 
total number of errors was 116 and the overall efficiency of the 
algorithm was approximately 93 %. It can be noticed that the 
considered objects, i.e., the cones, are axisymmetric. Hence, it 
does not matter from which side the LiDAR observes the cones. 
The captured point cloud is more or less the same, and even if 
the distance from the sensor increases, the shape and propor-
tions are retained. Nevertheless, for the classification based on 
statistical methods and not using artificial intelligence requiring 
high computer power, it is a quite good result, confirming effec-
tiveness of proposed approach.

Detailed analysis of the results presented in Figure 7 also 
allows conclusions to be drawn about probable sources of errors. 
Most of the errors happen below the 64 and above 190 points in 
the cloud. These are cones in which the number of points is too 
small and may result of faulty clustering. This applies in parti-
cular to cones for which the distance to the sensor is less than 
1.25 meters and then they are usually not fully illuminated by 
the laser beams. The above means that correct identification of 
the cone depends on the number of points in the point cloud 
and the distance between the object and the LiDAR sensor.

The research was carried out on a dataset consisting of the 
above-described items represented by three and four layers. 
Obtained results were like those presented in Figure 7 and sug-
gest that focusing on number of layers can have a significant 
impact on the computational efficiency of the classification pro-
cess. The fewer layers are analyzed the better the classifier per-
formance.

7. Conclusions

This paper presents a method for object classification using 
3D LiDAR data enabling safe operation and reliable driving 
in autonomous mode of the UGV. For this task, the work was 
focused on classification and recognition of two objects occur-
ring in road environments: cones and others.

Firstly, the collected environmental data were proces-
sed using horizontal segmentation as the features extraction 

Fig. 6. Block diagram of cone type recognition algorithm
Rys. 6. Schemat blokowy algorytmu rozpoznawania typu stożka

Fig. 7. Correlation plot between the distance of the cone and the 
number of points
Rys. 7. Wykres korelacji pomiędzy odległością stożka a liczbą punktów

113

Tomasz Buratowski, Mariusz Giergiel, Piotr Wójcicki, Jerzy Garus, Rafał Kot



method. The object cluster was split into five number of hori-
zontal layers. The overall accuracy of both regarded objects 
achieved about 95 %. Taking into account the accuracy of 
the classification process, it was noticed that starting from 
a certain number of layers, the accuracy level did not improve 
significantly as the number of layers considered increases. The-
refore, considering the fact that computing the features of 
each layer requires time and resources, specifying the sufficient 
number of layers could speed up the processing time of the 
classification procedures. 

Secondly, in order to determine the vehicle’s position in 
space and a safe route, the recognition algorithm was introdu-
ced, dividing the detected cone-shaped objects into four types. 
Its overall accuracy was 93.3 %. Errors in the recognition 
results were also diagnosis. The worked out classification algo-
rithm is characterized by a relatively low computational load, 
making it suitable for use in real-time applications in autono-
mous vehicles equipped with limited power computing units.

The proposed approach was tested in a real outdoor environ-
ment with the LEM AGV as an autonomous mobile platform. 
The obtained results showed that the classification process 
met the expected requirements, safe and reliable vehicle move-
ment was ensured, and navigation objectives were achieved. 
The experiences showed that the distance of the cone from the 
sensor has a big impact on the accuracy of the classification. 
Therefore, in the future, it is planned to divide the process 
into two stages: short distance and other. This should improve 
the final classification quality. 

Further work will focus on extending the functionality 
of the classification procedure so that it can be successfully 
applied to other classes of road objects.
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Streszczenie: Klasyfikacja obiektów jest ważną technologią dla lądowych pojazdów 
autonomicznych pozwalającą na identyfikację otaczającego środowiska i zaplanowanie bezpiecznej 
trasy przejazdu. W artykule zaproponowano metodę klasyfikacji opartą na segmentacji poziomej 
do wykrywania obiektów w kształcie stożka drogowego w pobliżu pojazdu za pomocą sensora 
LiDAR. Przechwycona chmura punktów jest dzielona na pięć warstw na podstawie informacji 
o wysokości, a podziału wykrytych obiektów na dwie grupy, stożki i inne, dokonano z wykorzystaniem 
klasyfikatorów dostępnych w przybornikach środowiska obliczeniowego MATLAB. Do rozdzielenia 
sklasyfikowanych obiektów stożkowych na cztery typy, wykorzystywane do oznakowania trasy 
przejazdu, opracowano i zastosowano algorytm ich rozpoznawania. Zaproponowane metoda, 
zweryfikowana eksperymentami nawigacyjnymi w warunkach rzeczywistych z wykorzystaniem 
bezzałogowego samochodu wyścigowego, dała zadowalające wyniki, tj. wysoki poziom 
klasyfikacji obiektów w kształcie stożka, krótki czas przetwarzania i niską złożoność obliczeniową. 
Przeprowadzone testy pozwoliły także na zdiagnozowanie przyczyn nieprawidłowej klasyfikacji 
obiektów stożkopodobnych. Wyniki eksperymentów wykazały, że przedstawione w artykule 
rozwiązanie może być wykorzystane w czasie rzeczywistym do autonomicznej, bezkolizyjnej jazdy po 
oznaczonych trasach.

Słowa kluczowe: kołowy pojazd lądowy, jazda autonomiczna, klasyfikacja obiektów, LiDAR
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